精英家教网 > 高中数学 > 题目详情
某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费费用共1.5万元,汽车的维修费用为:第一年0.4万元,第二年0.6万元,第三年0.8万元,…依等差数列逐年递增.
(1)设该车使用n年的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
考点:基本不等式在最值问题中的应用,数列的应用
专题:应用题,不等式的解法及应用
分析:(I)由已知,根据等差数列前n项和公式,即可得到f(n)的表达式;
(II)由(I)中使用n年该车的总费用,我们可以得到n年平均费用表达式,根据基本不等式,我们易计算出平均费用最小时的n值,进而得到结论.
解答: 解:(1)依题意f(n)=16.9+(0.2+0.4+0.6+…+0.2n)+1.5n=0.1n2+1.8n+16.9(n∈N*);
(Ⅱ)设该车的年平均费用为S万元,则有S=
f(n)
n
=0.1n+
16.9
n
+1.8
≥2
1.69
+1.8=4.4
当且仅当0.1n+
16.9
n
,即n=13时,等号成立.
所以,这种汽车使用13年报废最合算.
点评:本题考查的知识点是根据实际问题选择函数类型,基本不等式在最值问题中的应用,数列的应用,其中(I)的关键是由等差数列前n项和公式,得到f(n)的表达式,(II)的关键是根据基本不等式,得到函数的最小值点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三角形两边长分别为1,
3
,第三边的中线长也是1,则三角形内切圆半径为(  )
A、
3
-1
B、
1
2
3
-1)
C、
1
2
(3-
3
D、3-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱柱ABC-A′B′C′的底面是边长为1的正三角形,高AA′=1,在AB上取一点P,设△PA′C′与底面所成的二面角为α,△PB′C′与底面所成的二面角为β,则tan(α+β)的最小值是(  )
A、-
3
4
3
B、-
6
15
3
C、-
8
13
3
D、-
5
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an},a1=1,S10=145.设bn=an•an+1,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln
x+1
2
+
1-x
a(x+1)
(a>0)•
(Ⅰ)若函数f(x)在区间(2,4)上存在极值,求实数a的取值范围;
(Ⅱ)若函数f(x)在[1,﹢∞)上为增函数,求实数a的取值范围;
(Ⅲ)求证:当n∈N*且n≥2时,
1
2
+
1
3
+
1
4
+…+
1
n
<lnn

查看答案和解析>>

科目:高中数学 来源: 题型:

某地有10个著名景点,其中8个为日游景点,2个为夜游景点.某旅行团要从这10个景点中选5个作为二日游的旅游地.行程安排为第一天上午、下午、晚上各一个景点,第二天上午、下午各一个景点.
(Ⅰ)甲、乙两个日游景点至少选1个的不同排法有多少种?
(Ⅱ)甲、乙两日游景点在同一天游玩的不同排法有多少种?
(Ⅲ)甲、乙两日游景点不同时被选,共有多少种不同排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,0),B(0,2),C(cosθ,sinθ),O为坐标原点.
(1)
AC
BC
=-
1
3
,求sinθcosθ的值;
(2)若|
OA
+
OC
|=
7
,θ∈(0,
π
2
)求
OB
OC
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的周长为30,当它的半径R和圆心角α各取何值时,扇形的面积S最大?并求出扇形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(其中ω>0,φ∈(-
π
2
π
2
))的部分图象如图所示.
(1)求ω、φ的值;
(2)设x∈(-
π
3
π
2
),求函数f(x)的值域.

查看答案和解析>>

同步练习册答案