精英家教网 > 高中数学 > 题目详情
16.已知z=$\frac{i}{1-i}$(其中i是虚数单位),则复数z的虚部为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$iC.-$\frac{1}{2}$D.$\frac{1}{2}$i

分析 直接由复数代数形式的乘除运算化简复数z得答案.

解答 解:z=$\frac{i}{1-i}$=$\frac{i(1+i)}{(1-i)(1+i)}=\frac{-1+i}{2}=-\frac{1}{2}+\frac{1}{2}i$,
则复数z的虚部为:$\frac{1}{2}$.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.直线l与圆C:x2+y2=25相交,且直线与圆的交点的横纵坐标均为整数,则直线与圆的交点恰在坐标轴上的概率是(  )
A.$\frac{4}{33}$B.$\frac{2}{33}$C.$\frac{2}{39}$D.$\frac{4}{39}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的为(  )
A.线性相关系数r越大,两个变量的线性相关性越强
B.线性相关系数r越小,两个变量的线性相关性越弱
C.残差平方和越小的模型,模型拟合的效果越好
D.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面$\overrightarrow{α}$的一组基底,则能作为平面$\overrightarrow{α}$的一组基底的是(  )
A.$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$B.$\overrightarrow{{e}_{2}}$+2$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$
C.2$\overrightarrow{{e}_{2}}$-3$\overrightarrow{{e}_{1}}$,6$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若“?x∈[1,2],使2x2-λx+1<0成立”是假命题,则实数λ的取值范围是(  )
A.(-∞,2$\sqrt{2}$]B.[2$\sqrt{2}$,$\frac{9}{2}$]C.(-∞,3]D.[$\frac{9}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=2cos(4x+$\frac{π}{6}$)向左平移$\frac{π}{12}$个单位后,得到的图象的一个中心对称中心为(  )
A.(-$\frac{π}{4}$,0)B.(-$\frac{π}{6}$,0)C.($\frac{π}{3}$,0)D.($\frac{5π}{12}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于函数$f(x)={log_{\frac{1}{2}}}|{\;x\;}|$,下列结论正确的是(  )
A.值域为(0,+∞)B.图象关于x轴对称
C.定义域为RD.在区间(-∞,0)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为9,24,则输出的a=(  )
A.0B.3C.6D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={x∈Z|(x+1)(x-2)≤0},B={x|x>0},则集合A∩B的元素个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案