精英家教网 > 高中数学 > 题目详情
已知cosα=-
1
2
,且tanα<0,求sinα,tanα.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由cosα与tanα的值都小于0,得到sinα的值大于0,利用同角三角函数间的基本关系求出cosα的值,进而确定出tanα的值.
解答: 解:∵cosα=-
1
2
<0,且tanα=
sinα
cosα
<0,
∴sinα>0,
则sinα=
1-cos2α
=
3
2
,tanα=
sinα
cosα
=-
3
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

{a}表示实数a的正的小数部分,如{1.2}=0.2,{-0.3}=0.7,则方程{lg(x+2)}+{lgx}=1在区间(10,60)上的根是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点P(6,4)且与x轴正半轴交于点A,与y轴正半轴交于点B,O为坐标原点.若M为线段AB上一点,且直线OM的斜率为4,当△OAM的面积最小时,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x+
a
x
+b(a,b∈R)
为奇函数.
(Ⅰ)若f(1)=5,求函数f(x)的解析式;
(Ⅱ)当a=-2时,不等式f(x)≤t在[1,4]上恒成立,求实数t的最小值;
(Ⅲ)当a≥1时,求证:函数g(x)=f(2x)-c(c∈R)在(-∞,-1]上至多有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆台的上、下底面半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是180°,那么圆台的侧面积、表面积、体积分别是多少?(结果中保留π)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC-1)=1.
(Ⅰ)求B的大小;
(Ⅱ)若a+c=
3
3
2
b=
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)(其中ω>0)的最小正周期为π.
(1)求ω的值,并求函数f(x)的单调递减区间;
(2)在锐角△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-
1
2
,c=3,△ABC的面积为6
3
,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,sinA=
3
5
,tan(A-B)=-
1
3
,求sinB,cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[-3,3]时,函数f(x)=|x3-3x|的最大值为
 

查看答案和解析>>

同步练习册答案