【题目】己知圆:和抛物线:,圆的切线与抛物线相交于不同的两点,.
(1)当直线的斜率为1时,求;
(2)设点为点关于直线的对称点,是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为,据此解答如下问题.
(Ⅰ)求全班人数及分数在之间的频率;
(Ⅱ)现从分数在之间的试卷中任取 3 份分析学生情况,设抽取的试卷分数在的份数为 ,求的分布列和数学望期.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆:上的一动点,点,点在线段上,且满足.
(1)求点的轨迹的方程;
(2)设曲线与轴的正半轴,轴的正半轴的交点分别为点,,斜率为的动直线交曲线于、两点,其中点在第一象限,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的右焦点为,离心率.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点M ,使得恒成立?若存在,求出点M的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数,数列的前项和为, 且 .
(1)求证:数列为等差数列;
(2)若 ,且数列是单调递增数列,求实数的取值范围;
(3)若 ,数列满足:对于任意给定的正整数 ,是否存在 ,使 ?若存在,求 的值(只要写出一组即可);若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com