精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=lnx.
(1)若F(x)=$\frac{2f(x)}{x}$,求F(x)的单调区间;
(2)若G(x)=[f(x)]2-kx在定义域内单调递减,求满足此条件的实数k的取值范围.

分析 (1)求出函数F(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题转化为$\frac{2}{x}$lnx-k≤0在(0,+∞)上恒成立,记H(x)=$\frac{2}{x}$lnx-k,(x>0),利用导数研究函数H(x)的单调性,最后得到:为使G'(x)=H(x)≤0在(0,+∞)上恒成立必须且只需$\frac{2}{e}$-k≤0恒成立,列出不等式求出k的范围.

解答 解:(1)$F'(x)=\frac{2(1-lnx)}{x^2}$,由F'(x)=0得x=e,
∵当x∈(0,e)时,F'(x)>0,F(x)为增函数,
当x∈(e,+∞)时,F'(x)<0,F(x)为减函数,
(2)∵G(x)=(lnx)2-kx的定义域为(0,+∞),
∴G′(x)=$\frac{2lnx}{x}$-k,
依题意G′(x)-$\frac{2lnx}{x}$-k≤0在(0,+∞)内恒成立,
只需k≥$\frac{2lnx}{x}$恒成立,
由(1)知$F(x)=\frac{2lnx}{x}$,F(x)max=F(e)=$\frac{2}{e}$,
所以k的取值范围是[$\frac{2}{e}$,+∞).

点评 此题考查学生会利用导函数的正负得到函数的单调区间,会根据导函数的正负得到函数的增减性进而求得函数的极值,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若f(x)=(x-1)2(x≤1),则其反函数f-1(x)=1-$\sqrt{x}$(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知焦点在y轴的椭圆C上、下焦点分别是F1,F2,且长轴长为4,离心率为$\frac{{\sqrt{3}}}{2}$,直线y=mx+1与椭圆将于A、B两点.
(1)求椭圆C的标准方程;
(2)若$\overrightarrow{OA}⊥\overrightarrow{OB}$,求m的值;
(3)已知真命题:“如果点P(x0,y0)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,那么过点P的椭圆的切线方程为$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.”利用上述结论,解答下面问题:
若点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使l与椭圆C有且只有一个公共点,设直线的PF1,PF2斜率分别为k1,k2.若k≠0,试证明k(k1+k2)为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图:在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点;
(1)证明:EF∥平面PAD;
(2)求三棱锥E-ABC的体积;
(3)求EC与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ax-lnx,a∈R
(1)若f(x)在x=1处有极值,求f(x)的单调递增区间;
(2)是否存在正实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是$\left\{\begin{array}{l}x=\sqrt{3}t\\ y=4+t\end{array}\right.$(t为参数),圆C的极坐标方程是ρ=4sinθ,则直线l被圆C截得的弦长为(  )
A.2B.4C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过双曲线的左焦点F1且与双曲线的实轴垂直的直线交双曲线于A,B两点,O为坐标原点且$\overrightarrow{OA}•\overrightarrow{OB}$=0,则双曲线离心率e的值是$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知两点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”.给出下列直线:①y=x+1;②y=2x+1;③$y=\frac{4}{3}x$;④y=2,其中为“B型直线”的是(  )
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=lg(2x-1)的定义域为(  )
A.(0,+∞)B.[0,+∞)C.[1,+∞)D.(0,1)

查看答案和解析>>

同步练习册答案