精英家教网 > 高中数学 > 题目详情
12.函数f(x)=lg(2x-1)的定义域为(  )
A.(0,+∞)B.[0,+∞)C.[1,+∞)D.(0,1)

分析 根据对数函数的性质求出函数的定义域即可.

解答 解:由题意得:
2x-1>0,解得:x>0,
故函数的定义域是(0,+∞),
故选:A.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx.
(1)若F(x)=$\frac{2f(x)}{x}$,求F(x)的单调区间;
(2)若G(x)=[f(x)]2-kx在定义域内单调递减,求满足此条件的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-x2+alnx(a∈R).
(Ⅰ)当a=2时,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数g(x)=f(x)-2x+2x2,讨论函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(Ⅰ)设角$α=\frac{π}{6}$,求$\frac{{2sin({π+α})cos({π-α})-cos({π+α})}}{{1+{{sin}^2}α+sin({π-α})-{{cos}^2}({π+α})}}$的值;
(Ⅱ)已知$\frac{tanα}{tanα-6}=-1$,求值:$\frac{2cosα-3sinα}{3cosα+4sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合$A=\left\{{x\left|{{2^x}>\frac{1}{2}}\right.}\right\}$,B={x|x-1>0},则A∩(∁RB)={x|-1<x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:$\begin{array}{l}P({μ-σ<X≤μ+σ})=0.6826,P({μ-2σ<X≤μ+2σ})=0.9544,\\ P({μ-3σ<X≤μ+3σ})=0.9974\end{array}$
高三(1)班有40名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为(  )
A.19B.12C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的解析式为(  )
A.f(x)=sin(2x-$\frac{π}{4}$)B.f(x)=sin(2x+$\frac{π}{4}$)C.f(x)=sin(4x+$\frac{π}{4}$)D.f(x)=sin(4x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的顶点到渐近线的距离为(  )
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在棱长为1的正方体ABCD-A'B'C'D'中,E为棱BB'的中点.
(1)三棱锥D'-A'AE的体积为$\frac{1}{6}$;
(2)若点M是棱CD上的中点,求证:D'M⊥DE.

查看答案和解析>>

同步练习册答案