精英家教网 > 高中数学 > 题目详情
1.已知正实数a,b满足$\frac{1}{{({2a+b})b}}+\frac{2}{{({2b+a})a}}=1$,则ab的最大值为2-$\frac{2\sqrt{2}}{3}$.

分析 根据题意,可以将ab转化可得ab=$\frac{1}{2+\frac{b}{a}}$+$\frac{2}{2+\frac{a}{b}}$,令$\frac{b}{a}$=t,则ab又可以变形为ab=1+$\frac{t-1}{2{t}^{2}+5t+2}$,再令u=t-1,ab进一步可以变形为ab=1+$\frac{1}{2u+\frac{9}{u}+9}$,利用基本不等式,计算可得答案.

解答 解:根据题意,由于$\frac{1}{{({2a+b})b}}+\frac{2}{{({2b+a})a}}=1$,
则ab=ab($\frac{1}{{({2a+b})b}}+\frac{2}{{({2b+a})a}}$)=$\frac{a}{2a+b}$+$\frac{2b}{2b+a}$=$\frac{1}{2+\frac{b}{a}}$+$\frac{2}{2+\frac{a}{b}}$;
令$\frac{b}{a}$=t,
则ab=$\frac{1}{2+t}$+$\frac{2}{2+\frac{1}{t}}$=$\frac{1}{2+t}$+$\frac{2t}{2t+1}$=$\frac{2t+1+2t(2+t)}{(2+t)(2t+1)}$=$\frac{2{t}^{2}+6t+1}{2{t}^{2}+5t+2}$=1+$\frac{t-1}{2{t}^{2}+5t+2}$,
令u=t-1,t=u+1;
ab=1+$\frac{u}{2(u+1)^{2}+5(u+1)+2}$=1+$\frac{u}{2{u}^{2}+9u+9}$=1+$\frac{1}{2u+\frac{9}{u}+9}$≤1+$\frac{1}{2\sqrt{18}+9}$=2-$\frac{2\sqrt{2}}{3}$;
即ab的最大值2-$\frac{2\sqrt{2}}{3}$;
故答案为:2-$\frac{2\sqrt{2}}{3}$.

点评 本题考查基本不等式的应用,关键是利用$\frac{1}{{({2a+b})b}}+\frac{2}{{({2b+a})a}}=1$,借助恒等变形将问题进行转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC=$\frac{π}{3}$,E,F分别是BC,A1C的中点.
(1)求异面直线EF,AD所成角的余弦值;
(2)点M在线段A1D上,$\frac{{A}_{1}M}{{A}_{1}D}$=λ.若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我国古代数学家刘徽(如图1)在学术研究中,不迷信古人,坚持实事求是,他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟盒方盖”:一正方体相邻的两个侧面为底座两次内切圆柱切割,然后剔除外部,剩下的内核部分(如图2).如果“牟盒方盖”的主视图和左视图都是圆,则其俯视图形状为下列几幅图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A,B是圆O:x2+y2=4上的两个动点,|$\overrightarrow{AB}$|=2,$\overrightarrow{OC}$=$\frac{5}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$,若M是线段AB的中点,则$\overrightarrow{OC}$•$\overrightarrow{OM}$的值为(  )
A.3B.2$\sqrt{3}$C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若双曲线的右顶点与抛物线y2=12x的焦点相同,它们的离心率之和是3,该双曲线的标准方程是(  )
A.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{27}=1$B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{10}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某农场在同一块实验田中种植的某种农作物,连续8年的亩产量如下:(单位:kg)
450  430  460  440  450  440  470  460
则其方差为(  )
A.120B.80C.15D.150

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推.要求计算这50个数的和.
(Ⅰ) 将下面给出的程序框图补充完整:
①i<=50;
②p=p+i.
(Ⅱ)根据程序框图写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合$A=\left\{{\left.x\right|y=\sqrt{2x-{x^2}}}\right\}$,B={y|y=2x,x∈R},则A=[0,2];(∁RA)∩B=(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且Sn=ln(n+1)-a.
(1)求数列{an}的通项公式;
(2)设${b_n}={e^{a_n}}$(e为自然对数的底数),定义:$\sum_{k=1}^n{{b_k}={b_1}•{b_2}•{b_3}•…•{b_n}}$,求$\sum_{k=1}^n{b_k}$.

查看答案和解析>>

同步练习册答案