精英家教网 > 高中数学 > 题目详情
设函数f(x)=sinx(1+
1
cosx

(Ⅰ)讨论函数f(x)在其定义域上的单调性;
(Ⅱ)证明:
sinx
x
(1+
1
cosx
)>2(0<x<
π
2
).
考点:利用导数求闭区间上函数的最值,三角函数的化简求值,正弦函数的定义域和值域,正弦函数的单调性
专题:导数的综合应用
分析:(I)函数f(x)=sinx(1+
1
cosx
)=sinx+
sinx
cosx
,其定义域为{x|x≠kπ+
π
2
,k∈Z}.利用导数的运算法则可得f′(x)=
cos3x+1
cos2x
≥0,即可得出f(x)的单调区间;
(II)
sinx
x
(1+
1
cosx
)>2(0<x<
π
2
)?sinx(1+
1
cosx
)-2x>0,x∈(0,
π
2
)

令g(x)=sinx(1+
1
cosx
)-2x,x∈(0,
π
2
)
.利用导数和均值不等式即可得出.
解答: (I)解:函数f(x)=sinx(1+
1
cosx
)=sinx+
sinx
cosx
,其定义域为{x|x≠kπ+
π
2
,k∈Z}.
f′(x)=cosx+
cos2x+sin2x
cos2x
=
cos3x+1
cos2x
≥0,
∴f(x)的单调递增区间是(kπ-
π
2
,kπ+
π
2
)
(k∈Z).
(II)证明:
sinx
x
(1+
1
cosx
)>2(0<x<
π
2
)?sinx(1+
1
cosx
)-2x>0,x∈(0,
π
2
)

令g(x)=sinx(1+
1
cosx
)-2x,x∈(0,
π
2
)

g′(x)=
cos3x+1
cos2x
-2
=
cosx
2
+
cosx
2
+
1
cos2x
-2
>3
3
cosx
2
cosx
2
1
cos2x
-2=
3
32
-2
2
>0,
∴函数g(x)在(0,
π
2
)
上单调递增,且在x=0处连续.
∴g(x)>g(0)=0.
∴sinx(1+
1
cosx
)-2x>0,x∈(0,
π
2
)

sinx
x
(1+
1
cosx
)>2(0<x<
π
2
).
点评:本题考查了利用导数研究函数的单调性极值与最值、三角函数的单调性、均值不等式,考查了恒成立问题的等价转化方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),令F(x)=xf(x),则满足F(3)>F(2x-1)的解集为?

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面四边形ABCD中,记
AB
=
a
BC
=
b
CD
=
c
DA
=
d
,证明:若
a
b
=
b
c
=
c
d
=
d
a
,则四边形ABCD是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)(a-b)(a+b)3-2ab(a2-b2
(2)(a+b)(a2-ab+b2)-(a+b)3
(3)(a+4b-3c)2
(4)(a+4b-3c)(a-4b-3c)

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年5月,我省南昌市遭受连日大暴雨天气.某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照南昌暴雨前后两个时间收集有效投票,暴雨后的投票收集了50份,暴雨前的投票也收集了50份,所得统计结果如下表:
支持 不支持 总计
南昌暴雨后 x y 50
南昌暴雨前 20 30 50
总计 A B 100
已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为
2
5

(1)求列表中数据x,y,A,B的值;
(2)能够有多大把握认为南昌暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关系?附:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

抛一个骰子两次,点数分别为x、y.
(1)求
x+y
4
为整数的概率;
(2)求log2xy=1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=x(m-6)(m∈Z)与y=x(2-m)(m∈Z)的图象与x轴、y轴都无公共点,且y=x(m-2)(m∈Z)的图象关于y轴对称,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos3x-sin2x-5cosx,x∈R的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx-
π
6
)(ω>0)的图象与x正半轴交点的横坐标由小到大构成一个公差为
 π 
2
的等差数列,将该函数的图象向左平移m(m>0)个单位后,所得图象关于原点对称,则m的最小值为
 

查看答案和解析>>

同步练习册答案