精英家教网 > 高中数学 > 题目详情
在平面四边形ABCD中,记
AB
=
a
BC
=
b
CD
=
c
DA
=
d
,证明:若
a
b
=
b
c
=
c
d
=
d
a
,则四边形ABCD是矩形.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:
a
b
=
b
c
,可得
b
•(
a
-
c
)
=0,可得
b
⊥(
a
-
c
)
,或
a
=
c
.由题意
a
c
.于是
b
⊥(
a
-
c
)
,同理可得
d
⊥(
a
-
c
)
.于是
b
d
.同理可得
a
c
.即可得出四边形ABCD是矩形.
解答: 证明:∵
a
b
=
b
c
,∴
b
•(
a
-
c
)
=0,∴
b
⊥(
a
-
c
)
,或
a
=
c
.由题意
a
c
.因此
b
⊥(
a
-
c
)

同理由
c
d
=
d
a
,可得
d
⊥(
a
-
c
)
.∴
b
d

同理可得
a
c

即AB∥CD,BC∥AD.
∴四边形ABCD是平行四边形.
b
⊥(
a
-
c
)

∴BC⊥AB(或CD).
∴四边形ABCD是矩形.
点评:本题考查了向量垂直于数量积的关系、矩形的判定,考查了推理能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cosC+4xsinC+6≥0对一切实数x恒成立.
(1)求cosC的取值范围;
(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
2

(1)求MN的长;
(2)a为何值时,MN的长最小?并求出最小值.
(3)当MN的长最小时,求面MNA与面MNB所成的二面角α的余弦值.(用空间向量方法解答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=3,数列{an+Sn}是公差为2的等差数列.
(1)证明数列{an-2}为等比数列;
(2)证明Sn<2(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x+1
x-1
的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=|x-1|,解不等式f(x)+x2-1>0;
(Ⅱ)已知函数f(x)=|x+2|-|x-1|,解不等式f(x)≥5x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a2=3,其前n项和为Sn,且当n≥2时,
1
Sn
=
1
an
-
1
an+1

(1)求证:数列数列{Sn}是等比数列,并求数列{an}的通项公式;
(2)另bn=
an
(
an
3
+1)(
an+1
3
+1)
,记数列的前n项的和为Tn,试证明:Tn
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx(1+
1
cosx

(Ⅰ)讨论函数f(x)在其定义域上的单调性;
(Ⅱ)证明:
sinx
x
(1+
1
cosx
)>2(0<x<
π
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的函数y=|x-a|在区间(1,+∞)上是单调增函数,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案