精英家教网 > 高中数学 > 题目详情
17.存在实数φ,使得圆面x2+y2≤4恰好覆盖函数y=sin($\frac{π}{k}$x+φ)图象的最高点或最低点共三个,则正数k的取值范围是($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

分析 由题意可得T=2k≤2$\sqrt{3}$<2T,即可解得正数k的取值范围.

解答 解:函数y=sin($\frac{π}{k}$x+φ)图象的最高点或最低点一定在直线y=±1上,
由$\left\{\begin{array}{l}{y=±1}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$,解得:$-\sqrt{3}≤x≤\sqrt{3}$,
由题意可得:T=$\frac{2π}{\frac{π}{k}}$=2k,T≤2$\sqrt{3}$<2T,
解得正数k的取值范围是:($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].
故答案为:($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

点评 本题主要考查了圆方程的综合应用,三角函数的周期性及其求法,考查了数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设直角梯形ABCD,DA⊥AB,在两平行边AB、DC上有两个动点P、Q,直线PQ平分梯形的面积,求证:PQ必过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数,既是奇函数又在区间(0,+∞)上单调递增的函数是(  )
A.y=$\frac{1}{x}$B.y=2|x|C.y=-log${\;}_{\frac{1}{2}}$xD.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆O:x2+y2=r2(r>0)与y轴的正半轴交于点M,直线l1:y=2x+1被圆O所截得的弦长为$\frac{4\sqrt{5}}{5}$,圆O上相异两动点A,B所在的直线l2的方程为y=kx+m,且满足直线MA与直线MB的斜率之积为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求实数r的值;
(Ⅱ)试探究直线AB是否经过定点,若经过,请求定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式组$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+1≥0}\\{2x+3y-4≤0}\end{array}\right.$,表示在平面区域绕着原点旋转一周所得平面图形的面积为$\frac{16π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各式的大小关系正确的是(  )
A.sin11°>sin168°B.sin194°<cos160°
C.cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$D.tan(-$\frac{π}{5}$)<tan(-$\frac{3π}{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.计算:lg2+lg5=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若数列{bn}:对于任意的n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.
(1)设数列{an}满足:a1=a,对于任意的n∈N*,都有an+an+1=2n,证明:{an}为准等差数列,并求其通项公式.
(2)设(1)中的数列{an}的前n项和为Sn,试问:是否存在实数a,使得数列{Sn}有连续的两项都等于50?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知m,n,l是直线,α,β是平面,下列命题中:
①若m?α,l?β,且α∥β,则m∥l;
②若l平行于α,则α内可有无数条直线与l平行;
③若m?α,l?β,且l⊥m,则α⊥β;
④若m⊥n,n⊥l,则m∥l;
所有正确的命题序号为②.

查看答案和解析>>

同步练习册答案