精英家教网 > 高中数学 > 题目详情
13.抛物线y2=2x的准线方程是(  )
A.x=$\frac{1}{2}$B.x=1C.x=-$\frac{1}{2}$D.x=-1

分析 根据题意,由抛物线的标准方程分析可得其焦点位置以及p的值,进而由抛物线的准线方程计算可得答案.

解答 解:根据题意,抛物线的标准方程为y2=2x,
则其焦点在x轴正半轴上,且p=1,
则其准线方程为x=-$\frac{1}{2}$,
故选:C.

点评 本题考查抛物线的几何性质,关键是掌握抛物线标准方程的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设x,y满足约束条件$\left\{\begin{array}{l}{2x+y-6≤0,}&{\;}\\{x-y-1≤0,}&{\;}\\{x-1≥0.}&{\;}\end{array}\right.$若a∈[-2,9],则z=ax+y仅在点($\frac{7}{3}$,$\frac{4}{3}$)处取得最大值的概率为(  )
A.$\frac{9}{11}$B.$\frac{7}{11}$C.$\frac{6}{11}$D.$\frac{5}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点为F(-c,0)(c>0),过点F作圆${x^2}+{y^2}=\frac{a^2}{4}$的一条切线交圆于点E,交双曲线右支于点P,若$\overline{OP}=2\overline{OE}-\overline{OF}$,则双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{cosx,x<0}\end{array}\right.$,则f[f(-$\frac{π}{3}$)]=(  )
A.cos$\frac{1}{2}$B.-cos$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.±$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知π<α<$\frac{3π}{2}$,sinα=-$\frac{4}{5}$.
(Ⅰ)求cosα的值;
(Ⅱ)求sin2α+3tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间[1,e]上任取实数a,在区间[0,2]上任取实数b,使函数f(x)=ax2+x+$\frac{1}{4}$b有两个相异零点的概率是(  )
A.$\frac{1}{2(e-1)}$B.$\frac{1}{4(e-1)}$C.$\frac{1}{8(e-1)}$D.$\frac{1}{16(e-1)}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是直角梯形,其中
AB⊥AD,AB=BC=1,AD=2,AA1=$\sqrt{2}$.
    (Ⅰ)求证:直线C1D⊥平面ACD1
    (Ⅱ)试求三棱锥A1-ACD1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知指数函数f(x)=ax(a>0且a≠1)的图象过点P(2,4),则在(0,10]内任取一个实数x,使得f(x)>16的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为(  )
A.7B.0或7C.0D.4

查看答案和解析>>

同步练习册答案