精英家教网 > 高中数学 > 题目详情

【题目】已知函数,对任意a,恒有,且当时,有

求证:在R上为增函数;

若关于x的不等式对于任意恒成立,求实数t的取值范围.

【答案】(Ⅰ); (Ⅱ)见解析; (Ⅲ).

【解析】

根据题意,由特殊值法令,则,变形可得的值,

任取,且设,则,结合,分析可得,结合函数的单调性分析可得答案;

根据题意,原不等式可以变形为,结合函数的单调性可得,令,则原问题转化为上恒成立,即对任意恒成立,结合二次函数的性质分析可得答案.

根据题意,在中,

,则,则有

证明:任取,且设,则

又由

则有

在R上为增函数.

根据题意,

,则

又由,则

又由在R上为增函数,则

,则

则原问题转化为上恒成立,

对任意恒成立,

,只需

时,,则

故t的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数满足,且当时,.

(1)求的值;

(2)证明:为单调增函数;

(3)若,求上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中N≥2,且R.

(1)当时,求函数的单调区间;

(2)当时,令,若函数有两个极值点,且,求的取值范围;

(3)当时,试求函数的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.巴蜀中学高2018届学生为了调查支付宝在人群中的使用情况,在街头随机对名市民进行了调查,结果如下.

(1)对名市民按年龄以及是否使用支付宝进行分组,得到以下表格,试问能否有的把握认为“使用支付宝与年龄有关”?

使用支付宝

不使用支付宝

合计

岁以上

岁以下

合计

(2)现采用分层抽样的方法,从被调查的岁以下的市民中抽取了位进行进一步调查,然后从这位市民中随机抽取位,求至少抽到位“使用支付宝”的市民的概率;

(3) 为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有的概率获得元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一周使用了次支付宝,记为这一周他获得的奖励金数,求的分布列和数学期望.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,分别是线段的中点,,直线与平面所成的角等于

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n为正整数集合n对于集合A中的任意元素,记.

1)当时,若,求的值;

2)当时,设BA的子集,且满足:对于B中的任意元素αβ,当αβ相同时,是奇数;当αβ不同时,是偶数.求集合B中元素个数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45/m,新墙的造价为180/m,设利用的旧墙的长度为x(单位:元)。

)将y表示为x的函数;

)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,若函数存在与直线平行的切线,求实数的取值范围;

(2)当时,,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,数据如下表所示:

支付方式

微信

支付宝

购物卡

现金

人数

200

150

150

100

现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.

(1)求三人中使用微信支付的人数多于现金支付人数的概率;

(2)记为三人中使用支付宝支付的人数,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案