分析 (1)根据所给的两个集合的不等式,写出两个集合对应的最简形式,根据两个集合的交集,看出两个集合的端点之间的关系,求出结果.
(2)根据所求的集合B,写出集合B的补集,根据集合A是B的补集的子集,求出两个集合的端点之间的关系,求出m的值.
解答 解:(1)由已知得A={x|x2-2x-8≤0,x∈R}=[-2,4],
B={x|x2-(2m-3)x+m2-3m≤0,x∈R,m∈R }=[m-3,m].
∵A∩B=[2,4],∴$\left\{\begin{array}{l}{m-3=2}\\{m≥4}\end{array}\right.$,∴m=5.
(2)∵B=[m-3,m],∴∁RB=(-∞,m-3)∪(m,+∞).
∵A⊆∁RB,
∴m-3>4或m<-2.
∴m>7或m<-2.
∴m∈(-∞,-2)∪(7,+∞)
点评 本题考查集合之间的关系与参数的取值,本题解题的关键是利用集合之间的关系,得到不等式之间的关系,本题是一个基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 55 | B. | 100 | C. | 110 | D. | 120 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞)∪(-∞,0) | B. | (1,2]∪(-∞,0) | C. | (-∞,0) | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,$2\sqrt{3}$) | B. | ($\frac{3}{2}$,$2-\sqrt{3}$) | C. | (2,$4-2\sqrt{3}$) | D. | ($\frac{3}{2}$,$4-2\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{27}$ | B. | $\frac{8}{27}$ | C. | $\frac{11}{27}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com