精英家教网 > 高中数学 > 题目详情
1.已知直线L被两平行直线L1:2x-5y+9=0与L2:2x-5y-7=0所截线段AB的中点恰在直线x-4y-1=0上,圆C:(x+4)2+(y-1)2=25.
(1)证明直线L与圆C恒有两个交点;
(2)当直线L被圆C截得的弦最短时,求出直线方程和最小弦长.

分析 (1)设线段AB的中点为M(a,b),由此列出方程组求出a、b的值;根据圆C的圆心C与点M的距离与半径r的大小即可证明直线L与圆C恒有两个交点;
(2)由直线L被圆C截得的弦最短时直线L⊥MC,求出L的斜率,写出直线方程,再求出最小弦长.

解答 解:(1)证明:设线段AB的中点为M(a,b),
依题意$\left\{\begin{array}{l}a-4b-1=0\\ \frac{|2a-5b+9|}{{\sqrt{29}}}=\frac{|2a-5b-7|}{{\sqrt{29}}}\end{array}\right.$,…(2分)
解得a=-3,b=-1;…(3分)
∵圆C:(x+4)2+(y-1)2=25圆心为C(-4,1),半径r=5;…(4分)
且|MC|=$\sqrt{{[-4-(-3)]}^{2}{+[1-(-1)]}^{2}}$=$\sqrt{5}$<r,
∴直线L与圆C恒有两个交点;   …(6分)
(2)∵当直线L被圆C截得的弦最短时直线L⊥MC,…(8分)
∴kL=-$\frac{1}{{k}_{MC}}$=-$\frac{-4-(-3)}{1-(-1)}$=$\frac{1}{2}$,
则直线L为$y+1=\frac{1}{2}(x+3)$,
即x-2y+1=0,…(10分)
最小弦长为|EF|=$2\sqrt{{r^2}-|MC{|^2}}=4\sqrt{5}$.…(12分)

点评 本题考查了直线与圆的位置关系的应用问题,也考查了直线垂直以及两点间的距离公式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C所对的边分a,b,c,c2sinAcosA+a2sinCcosC=4sinB,$cosB=\frac{\sqrt{7}}{4}$,D是AC上一点,且${S}_{△BCD}=\frac{2}{3}$,则$\frac{AD}{AC}$=$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知AB为半圆O的直径,C为半圆上一点,CD是半圆的切线,AC平分∠BAD,AD交半圆于点E.
(Ⅰ)求证:AD⊥CD;
(Ⅱ)若AB=5,DE=1,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“x2-4x<0”的一个充分不必要条件为(  )
A.0<x<4B.0<x<2C.x>0D.x<4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC中,点A(1,2),B(-1,3),C(3,-3).
(1)求AC边上的高所在直线的方程;
(2)求AB边上的中线的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x+y≥-1}\\{x-y≤-1}\\{2x-3y≥-6}\end{array}\right.$
(1)求目标函数z=2x-y的取值范围;
(2)求目标函数z=x2+y2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆的焦点F1(0,-1),F2(0,1),P为椭圆上一动点,且|F1F2|是|PF1|与|PF2|的等差中项,则椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1C.x2+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数$z=\frac{1}{1+i}+i$,则z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?

查看答案和解析>>

同步练习册答案