精英家教网 > 高中数学 > 题目详情
10.已知复数$z=\frac{1}{1+i}+i$,则z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:∵复数$z=\frac{1}{1+i}+i$=$\frac{1-i}{(1+i)(1-i)}$+i=$\frac{1}{2}+\frac{1}{2}i$,则z在复平面内对应的点$(\frac{1}{2},\frac{1}{2})$在第一象限.
故选:A.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=3x-$\frac{1}{{{3^{|x|}}}}$.
(1)若f(x)=0,求x的取值集合;
(2)若对于t∈[1,3]时,不等式3tf(2t)+mf(t)≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线L被两平行直线L1:2x-5y+9=0与L2:2x-5y-7=0所截线段AB的中点恰在直线x-4y-1=0上,圆C:(x+4)2+(y-1)2=25.
(1)证明直线L与圆C恒有两个交点;
(2)当直线L被圆C截得的弦最短时,求出直线方程和最小弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知幂函数$y={x}^{{p}^{2}-2p-3}$(p∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,实数a满足$({a}^{2}-1)^{\frac{p}{3}}<(3a+3)^{\frac{p}{3}}$,则a的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+4cosα}\\{y=2\sqrt{3}+4sinα}\end{array}\right.$(α是参数).以原点O为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)已知直线C2倾斜角为α,且过点(2,$\sqrt{3}$),若曲线C1与直线C2交于M,N两点,求|MN|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数$y=2sin(2x+\frac{π}{6})$的图象向右平移$\frac{1}{4}$个周期后,所得图象对应的函数为f(x),则函数f(x)的单
调递增区间(  )
A.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$B.$[kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z)$
C.$[kπ-\frac{5π}{24},kπ+\frac{7π}{24}](k∈Z)$D.$[kπ+\frac{7π}{24},kπ+\frac{19π}{24}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下:
甲    7  8  7  9  5  4  9  10  7  4
乙    9  5  7  8  7  6  8  6   7  7
(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;
(Ⅱ)若规定命中8环及以上环数为优秀,请依据上述数据估计,在第11次射击时,甲、乙两人分
别获得优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ x-y-1≤0\\ x-2y+1≥0\end{array}\right.$,则2x-y的最大值为(  )
A.$-\frac{1}{2}$B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知非直角△ABC中,内角A,B,C的对边分别是a,b,c,其中c=1,又$C=\frac{π}{3}$,若sinC+sin(A-B)=3sin2B,则△ABC的面积为$\frac{{3\sqrt{3}}}{28}$.

查看答案和解析>>

同步练习册答案