| A. | $-\frac{1}{2}$ | B. | 0 | C. | 2 | D. | 4 |
分析 作出不等式组对应的平面区域,利用目标函数k的几何意义,进行平移,结合图象得到k=2x-y的最大值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由k=2x-y得y=2x-k,
平移直线y=2x-k,
由图象可知当直线y=2x-k经过点A时,直线y=2x-k的截距最小,
此时k最大.
由$\left\{\begin{array}{l}{x-y-1=0}\\{x-2y+1=0}\end{array}\right.$可得A(3,2),标代入目标函数k=2×3-2=4,
即k=2x-y的最大值为4.
故选:D.
点评 本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用k的几何意义是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{12}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男性 | 女性 | 总计 | |
| 读营养说明 | 40 | 20 | 60 |
| 不读营养说明 | 20 | 20 | 40 |
| 总计 | 60 | 40 | 100 |
| P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com