分析 (Ⅰ)消去参数t即可得到直线l的普通方程;利用x=ρcosθ,y=ρsinθ将曲线C转化为普通方程;
(Ⅱ)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论.
解答
解:(Ⅰ)直线l:$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=-5+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数),消去参数t得普通方程y=x-4.
由ρ=4cosθ得ρ2=4ρcosθ.
由x=ρcosθ,y=ρsinθ以及x2+y2=ρ2,得
y2+(x-2)2=4;
(Ⅱ)由y2+(x-2)2=4得圆心坐标为(2,0),半径R=2,
则圆心到直线的距离为:d=$\frac{|2-0+4|}{\sqrt{2}}$=3$\sqrt{2}$,
而点P在圆上,即O′P+PQ=d(Q为圆心到直线l的垂足),
所以点P到直线l的距离最小值为3√2-√2=2√2.
点评 本题考查了参数方程化为普通方程、极坐标方程化为平面直角坐标方程、点到直线的距离公式,本题难度不大,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com