精英家教网 > 高中数学 > 题目详情
2.甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下:
甲    7  8  7  9  5  4  9  10  7  4
乙    9  5  7  8  7  6  8  6   7  7
(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;
(Ⅱ)若规定命中8环及以上环数为优秀,请依据上述数据估计,在第11次射击时,甲、乙两人分
别获得优秀的概率.

分析 (Ⅰ)先求出平均数,再求出方差,由${{S}_{乙}}^{2}$<${{S}_{甲}}^{2}$,知乙比甲的射击成绩更稳.
(Ⅱ)由题意得:甲运动员获得优秀的概率为$\frac{2}{5}$,乙运动员获得优秀的概率为$\frac{3}{5}$.

解答 解:(Ⅰ)∵x=$\frac{1}{10}(7+8+7+9+5+4+9+10+7+4)=7$,
x=$\frac{1}{10}$(9+5+7+8+7+6+8+6+7+7)=7,
∴S2=$\frac{1}{10}$[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,
${{S}_{乙}}^{2}$=$\frac{1}{10}$[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(7-7)2+(6-7)2+(8-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2,
∵${{S}_{乙}}^{2}$<${{S}_{甲}}^{2}$,
∴乙比甲的射击成绩更稳.
(Ⅱ)由题意得:在第11次射击时,甲运动员获得优秀的概率为p1=$\frac{4}{10}$=$\frac{2}{5}$,
乙运动员获得优秀的概率为p2=$\frac{3}{10}$.

点评 本题考查方差、概率的求法,是基础题,解题时要认真审题,注意方差公式和互斥事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知AB为半圆O的直径,C为半圆上一点,CD是半圆的切线,AC平分∠BAD,AD交半圆于点E.
(Ⅰ)求证:AD⊥CD;
(Ⅱ)若AB=5,DE=1,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆的焦点F1(0,-1),F2(0,1),P为椭圆上一动点,且|F1F2|是|PF1|与|PF2|的等差中项,则椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1C.x2+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数$z=\frac{1}{1+i}+i$,则z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数g(x)是R上的偶函数,当x<0时,g(x)=ln(1-x),函数$f(x)=\left\{\begin{array}{l}{x^3},x≤0\\ g(x),x>0\end{array}\right.$满足f(2-x2)>f(x),则实数x的取值范围是(  )
A.(-∞,1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(1,2)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a∈{0,1,2},b∈{-1,1,3,5},则函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=-5+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)写出直线l和曲线C的普通方程;
(Ⅱ)已知点P为曲线C上的动点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若一个椭圆的内接正方形有两边分别经过它的两个焦点,则此椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

同步练习册答案