精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=2alnx-x2+1(a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a>0,求函数f(x)在区间[1,+∞)上的最大值;
(Ⅲ)若f(x)≤0在区间[1,+∞)上恒成立,求a的最大值.

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)先求出函数的导数,通过讨论①当$\sqrt{a}$≤1②当$\sqrt{a}$>1的情况,从而求出函数的最值;
(Ⅲ)由(Ⅱ)可知:当0<a≤1时,f(x)≤f(1)=0在区间[1,+∞)上恒成立;当a>1时,由于f(x)在区间[1,$\sqrt{a}$]上是增函数,从而得到a的最大值.

解答 解:(Ⅰ)f′(x)=$\frac{2{(x}^{2}-a)}{x}$,(x>0),
a≤0时,f′(x)>0,f(x)在(0,+∞)递增,
a>0时,令f′(x)>0,解得x1>$\sqrt{a}$,
令f′(x)<0,解得:0<x<$\sqrt{a}$,
故f(x)在(0,$\sqrt{a}$)递减,在($\sqrt{a}$,+∞)递增;
(Ⅱ)f′(x)=$\frac{2{(x}^{2}-a)}{x}$,(x>0),
令f′(x)=0,由a>0,解得x1=$\sqrt{a}$,x2=-$\sqrt{a}$(舍去),
①当$\sqrt{a}$≤1,即0<a≤1时,在区间[1,+∞)上f′(x)≤0,函数f(x)是减函数.
所以 函数f(x)在区间[1,+∞)上的最大值为f(1)=0;        
②当$\sqrt{a}$>1,即a>1时,x在[1,+∞)上变化时,f′(x),f(x)的变化情况如下表

x1(1,$\sqrt{a}$)$\sqrt{a}$($\sqrt{a}$,+∞)
f′(x)+0-
f(x)0alna-a+1
∴函数f(x)在区间[1,+∞)上的最大值为f($\sqrt{a}$)=alna-a+1,
综上所述:当0<a≤1时,函数f(x)在区间[1,+∞)上的最大值为f(1)=0;
当a>1时,函数f(x)在区间[1,+∞)上的最大值为f($\sqrt{a}$)=alna-a+1,
(Ⅲ)由(Ⅱ)可知:当0<a≤1时,f(x)≤f(1)=0在区间[1,+∞)上恒成立;
当a>1时,由于f(x)在区间[1,$\sqrt{a}$]上是增函数,
∴f($\sqrt{a}$)>f(1)=0,即在区间[1,+∞)上存在x=$\sqrt{a}$使得f(x)>0.
综上所述,a的最大值为1.

点评 本题考查了函数的单调性,函数的最值问题,考查了导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.对于任意结定的两个正数x,y,定义一种运算?:x?y=xlny.设x>0,y>0,z>0,r∈R,则下列命题中:①x?y=y?x;③(x?y)(x?z)=x?(yz);③ex?ey=exy;④(x?y)r=xr?yr,正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中是偶函数,且在(1,+∞)上是单调递减的函数为(  )
A.$y=-{x^{\frac{1}{2}}}$B.y=-x2+|x|C.y=ln|x|D.y=-x2+x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若正实数x,y满足log2(x+3y)=log4x2+log2(2y),则3x+y的最小值是(  )
A.12B.6C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知复数$z=\frac{1-3i}{1+i}$,则复数z的虚部为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知正数a,b,c满足5c-3a≤b≤4c-a,b≥c,则$\frac{b}{a}$的取值范围为(  )
A.[2,7]B.(0,7]C.[$\frac{1}{3}$,7]D.[3,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布同数递减,初日织五尺,末一日织一尺,计织三十日.”由此推断,该女子到第十一日时,大约已经完成三十日织布总量的(  )
A.49%B.53%C.61%D.88%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,a、b、c分别是角A、B、C的对边,若角A、B、C依次成等差数列,且-x2+5x-4>0的解集为{x|a<x<c},则S△ABC=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列各式正确的是①②④
①{a}⊆{a}  ②{1,2,3}={3,1,2}     ③0⊆{0}      ④∅⊆{0}  ⑤{1}∈{x|x≤5}   ⑥{1,3}⊆{3,4}.

查看答案和解析>>

同步练习册答案