精英家教网 > 高中数学 > 题目详情
1.已知复数$z=\frac{1-3i}{1+i}$,则复数z的虚部为-2.

分析 利用复数的运算法则、虚部的定义即可得出.

解答 解:复数$z=\frac{1-3i}{1+i}$=$\frac{(1-3i)(1-i)}{(1+i)(1-i)}$=$\frac{-2-4i}{2}$=-1-2i,则复数z的虚部为-2.
故答案为:-2.

点评 本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.复数z=$\frac{1+i}{i}$,$\overline z$是它的共轭复数,则$z•\overline z$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若对任意x∈[2,4]及y∈[2,3],该不等式xy≤ax2+2y2恒成立,则实数a的范围是a≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知全集U=R,集合A={x|x2-2x-3>0},B={x|4-x2≤0},求:
(1)A∩B;
(2)(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{m}$=(1,1),向量$\overrightarrow{n}$与向量$\overrightarrow{m}$夹角为$\frac{3}{4}$π,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1,则|$\overrightarrow{n}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2alnx-x2+1(a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a>0,求函数f(x)在区间[1,+∞)上的最大值;
(Ⅲ)若f(x)≤0在区间[1,+∞)上恒成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ为常数,且0<λ<1
(I)求函数f(x)的极值;
(II)证明:对?a∈R+,?x∈R+,使得不等式|$\frac{g(x)-1}{x}-1$|<a成立;
(III)设λ1,λ2∈R+,且λ12=1,证明:对?a1,a2∈R+,都有a1λ1a2λ2≤λ1a12a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右交点分别为F1,F2,且|F1F2|=4$\sqrt{3}$,A($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)是椭圆上一点.
(1)求椭圆C的标准方程和离心率e的值;
(2)若T为椭圆C上异于顶点的任意一点,M,N分别为椭圆的右顶点和上顶点,直线TM与y轴交于点P,直线TN与x轴交于点Q,求证:|PN|•|QM|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{m}^{2}}=1(m>0)$的离心率为$\sqrt{3}$,则m的值为(  )
A.$2\sqrt{2}$B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案