分析 A=2B,利用正弦定理可得:$\frac{a}{b}$=$\frac{sinA}{sinB}$=2cosB,由$\frac{π}{2}$<A+B=3B<π,$0<A,B<\frac{π}{2}$,可得$\frac{π}{6}$<B<$\frac{π}{4}$,即可得出.
解答 解:在锐角三角形ABC中,∵A=2B,
∴$\frac{a}{b}$=$\frac{sinA}{sinB}$=$\frac{2sinBcosB}{sinB}$=2cosB,
∵$\frac{π}{2}$<A+B=3B<π,$0<A,B<\frac{π}{2}$,
∴$\frac{π}{6}$<B<$\frac{π}{4}$,
∴$\frac{\sqrt{2}}{2}$<cosB<$\frac{\sqrt{3}}{2}$,
∴$\frac{a}{b}$∈$(\sqrt{2},\sqrt{3})$.
点评 本题考查了正弦定理、三角函数求值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x2+y2=1 | B. | x2+y2=4 | ||
| C. | x2+y2=$\frac{16}{5}$ | D. | x2+y2=1或x2+y2=37 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最多可以购买4份一等奖奖品 | B. | 最多可以购买16份二等奖奖品 | ||
| C. | 购买奖品至少要花费100元 | D. | 共有20种不同的购买奖品方案 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 4π | C. | 8π | D. | 16π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com