精英家教网 > 高中数学 > 题目详情
18.在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,A=2B,求$\frac{a}{b}$的取值范围.

分析 A=2B,利用正弦定理可得:$\frac{a}{b}$=$\frac{sinA}{sinB}$=2cosB,由$\frac{π}{2}$<A+B=3B<π,$0<A,B<\frac{π}{2}$,可得$\frac{π}{6}$<B<$\frac{π}{4}$,即可得出.

解答 解:在锐角三角形ABC中,∵A=2B,
∴$\frac{a}{b}$=$\frac{sinA}{sinB}$=$\frac{2sinBcosB}{sinB}$=2cosB,
∵$\frac{π}{2}$<A+B=3B<π,$0<A,B<\frac{π}{2}$,
∴$\frac{π}{6}$<B<$\frac{π}{4}$,
∴$\frac{\sqrt{2}}{2}$<cosB<$\frac{\sqrt{3}}{2}$,
∴$\frac{a}{b}$∈$(\sqrt{2},\sqrt{3})$.

点评 本题考查了正弦定理、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知△ABC的三个顶点坐标分别为A(-2,3),B(-2,-1),C(6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则圆的方程为(  )
A.x2+y2=1B.x2+y2=4
C.x2+y2=$\frac{16}{5}$D.x2+y2=1或x2+y2=37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.现有编号从一到四的四个盒子,甲把一个小球随机放入其中一个盒子,但有$\frac{1}{5}$的概率随手扔掉.然后让乙按编号顺序打开每一个盒子,直到找到小球为止(或根本不在四个盒子里).假设乙打开前两个盒子没有小球,则小球在最后一个盒子里的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数y=3-2sin(x+$\frac{π}{3}$)的最大值与最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则$\sum_{n=1}^{2016}$f($\frac{nπ}{6}$)=(  )
A.-1B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知角α是第四象限角,且角的终边在直线y=-2x上,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,A={x|x=ωk-k,k∈Z},则集合A中的元素有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在某校冬季长跑活动中,学校要给获得一二等奖的学生购买奖品,要求花费总额不得超过200元,已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于$\frac{1}{3}$,且获得一等奖的人数不能少于2人,那么下列说法中错误的是(  )
A.最多可以购买4份一等奖奖品B.最多可以购买16份二等奖奖品
C.购买奖品至少要花费100元D.共有20种不同的购买奖品方案

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设${z_1},{z_2}∈C,z_1^2-2{z_1}{z_2}+4z_2^2=0,|{z_2}|=2$,那么以|z1|为直径的圆的面积为(  )
A.πB.C.D.16π

查看答案和解析>>

同步练习册答案