精英家教网 > 高中数学 > 题目详情
6.已知x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
(1)求函数y=cosx的值域;
(2)求函数y=-3(1-cos2x)-4cosx+4的值域.

分析 (1)由条件利用余弦函数的定义域和值域,求得函数y=cosx的值域.
(2)把函数y的解析式化为y=3(cosx-$\frac{2}{3}$)2-$\frac{1}{3}$,结合cosx∈[-$\frac{1}{2}$,1],利用二次函数的性质求得y的值域.

解答 解:(1)∵y=cosx在[-$\frac{π}{3}$,0]上为增函数,在[0,$\frac{2π}{3}$]上为减函数,
∴当x=0时,y取最大值1;x=$\frac{2π}{3}$时,y取最小值-$\frac{1}{2}$,
∴y=cosx的值域为[-$\frac{1}{2}$,1].
(2)原函数化为:y=3cos2x-4cosx+1,
即y=3(cosx-$\frac{2}{3}$)2-$\frac{1}{3}$,由(1)知,cosx∈[-$\frac{1}{2}$,1],
故y的值域为[-$\frac{1}{3}$,$\frac{15}{4}$].

点评 本题主要考查余弦函数的值域,二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为单位向量,且$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,则向量$\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$方向上的射影为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.集合A={y|y=-x2-3},B={y|y=x2+2x-4},则A∩B=[-5,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${∫}_{0}^{\frac{π}{4}}$(sinx-acosx)dx=-$\frac{\sqrt{2}}{2}$,则实数a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设(  )
A.x>0或y>0B.x>0且y>0C.xy>0D.x+y<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中真命题有(1),(5)
(1)已知集合A={1,2},$B=\left\{{x\left|{x=\frac{1}{a}}\right.}\right\}$,若B⊆A,则a的值为$1或\frac{1}{2}$
(2)已知$f(x)=\left\{\begin{array}{l}({2-a})x+1,({x<1})\\{a^x},({x≥1})\end{array}\right.$(a>0,a≠1)是R上的增函数,那么a的取值范围是(1,2)
(3)函数$f(x)=\frac{1}{x}$在定义域(-∞,0)∪(0,∞)上是减函数
(4)$\left\{{x∈N\left|{\frac{6}{6-x}∈N}\right.}\right\}=\left\{{\frac{6}{6-x}∈N\left|{x∈N}\right.}\right\}$
(5)定义在R上的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,则x∈[-4,-2]时,f(x)的最小值是$-\frac{1}{9}$.
(6)若A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},则A∪B=C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{x+1}$(x≥-1)的反函数为y=x2-1(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一元二次不等式$a{x^2}+2x+b>0\begin{array}{l}{\;}{(a>b)}\end{array}$的解集为$\left\{{x|x≠-\frac{1}{a}}\right\}$,则$\frac{{{a^2}+{b^2}}}{a-b}$的最小值为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{{{2^x}+{2^{-x}}}}{{{2^x}-{2^{-x}}}}$,判断函数的奇偶性,单调性,并且求出值域.

查看答案和解析>>

同步练习册答案