精英家教网 > 高中数学 > 题目详情
14.${∫}_{0}^{\frac{π}{4}}$(sinx-acosx)dx=-$\frac{\sqrt{2}}{2}$,则实数a=$\sqrt{2}$.

分析 直接根据定积分的运算法则,${∫}_{0}^{\frac{π}{4}}$(sinx-acosx)dx=${∫}_{0}^{\frac{π}{4}}$sinxdx-a${∫}_{0}^{\frac{π}{4}}$cosxdx,再分别计算定积分,解得a的值.

解答 解:根据定积分的运算法则,
${∫}_{0}^{\frac{π}{4}}$(sinx-acosx)dx
=${∫}_{0}^{\frac{π}{4}}$sinxdx-a${∫}_{0}^{\frac{π}{4}}$cosxdx
=$-cos{x|}_{0}^{\frac{π}{4}}$-a•$sin{x|}_{0}^{\frac{π}{4}}$
=1-$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$a=-$\frac{\sqrt{2}}{2}$,
所以,1-$\frac{\sqrt{2}}{2}$a=0,
解得,a=$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题主要考查了定积分的求解,涉及正弦函数和余弦函数的定积分和积分运算法则的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合(∁UM)∩N可以表示为(  )
A.{1}B.{1,2}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)满足f(10x)=x+lg5,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法中正确的是(  )
A.若命题P:?x∈R有x2>0,则¬P:?x∈R有x2≤0
B.直线a、b为异面直线的充要条件是直线a、b不相交
C.若p是q的充分不必要条件,则¬q是¬p的充分不必要条件
D.方程ax2+x+a=0有唯一解的充要条件是a=±$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=x2+bx+c(b、c∈R).
(Ⅰ)若f(x)在[-2,2]上单调,求b的取值范围;
(Ⅱ)若f(x)≥|x|对一切x∈R恒成立,求证:b2+1≤4c;
(Ⅲ)若对一切满足|x|≥2的实数x,都有f(x)≥0,且$f(\frac{{2{x^2}+3}}{{{x^2}+1}})$的最大值为1,求证:b、c满足的条件是3b+c+8=0且-5≤b≤-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,0<φ<$\frac{π}{2}$)的最大值为3,函数f(x)的图象上相邻两对称轴间的距离为$\frac{π}{2}$,且f(0)=2.
(1)求函数f(x)的解析式;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,再向下平移1个单位后得到函数g(x)的图象,试判断g(x)的奇偶性,并求出g(x)在R上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
(1)求函数y=cosx的值域;
(2)求函数y=-3(1-cos2x)-4cosx+4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线l1;x+ay+2=0和直线l2:(a-2)x+3y+6a=0,则“a=3”是“l1∥l2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设z1,z2是复数,则下列命题中的假命题是(  )
A.若|z1|=|z2|,则${z_1}^2={z_2}^2$B.若${z_1}=\overline{z_2}$,则$\overline{z_1}={z_2}$
C.若|z1|=|z2|,则${z_1}•\overline{z_1}={z_2}•\overline{z_2}$D.若|z1-z2|=0,则$\overline{z_1}=\overline{z_2}$

查看答案和解析>>

同步练习册答案