精英家教网 > 高中数学 > 题目详情
17.集合A={y|y=-x2-3},B={y|y=x2+2x-4},则A∩B=[-5,-3].

分析 化简集合A、B,求出A∩B即可.

解答 解:集合A={y|y=-x2-3}={y|y≤-3}=(-∞,-3]
B={y|y=x2+2x-4}={y|y=(x+1)2-5}={y|y≥-5}=[-5,+∞)
∴A∩B=[-5,-3].
故答案为:[-5,-3].

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(1,-2),若(2$\overrightarrow{a}$+3$\overrightarrow{b}$)⊥(m$\overrightarrow{a}$-$\overrightarrow{b}$),则实数m=(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.f(x)=$\frac{x}{1-\sqrt{1-x}}$的定义域是(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)满足f(10x)=x+lg5,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函数,则a的取值范围是(  )
A.0<a<1B.0≤a≤1C.0<a≤1D.0≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法中正确的是(  )
A.若命题P:?x∈R有x2>0,则¬P:?x∈R有x2≤0
B.直线a、b为异面直线的充要条件是直线a、b不相交
C.若p是q的充分不必要条件,则¬q是¬p的充分不必要条件
D.方程ax2+x+a=0有唯一解的充要条件是a=±$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=x2+bx+c(b、c∈R).
(Ⅰ)若f(x)在[-2,2]上单调,求b的取值范围;
(Ⅱ)若f(x)≥|x|对一切x∈R恒成立,求证:b2+1≤4c;
(Ⅲ)若对一切满足|x|≥2的实数x,都有f(x)≥0,且$f(\frac{{2{x^2}+3}}{{{x^2}+1}})$的最大值为1,求证:b、c满足的条件是3b+c+8=0且-5≤b≤-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
(1)求函数y=cosx的值域;
(2)求函数y=-3(1-cos2x)-4cosx+4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知y=x2+4ax-2在区间(-∞,4]上为减函数,则a的取值范围是(  )
A.(-∞,-2]B.(-∞,2]C.[-2,+∞)D.[2,+∞)

查看答案和解析>>

同步练习册答案