精英家教网 > 高中数学 > 题目详情
从数列中抽出一些项,依原来的顺序组成的新数列叫数列的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)若是无穷等比数列,首项,公比,则数列是否存在一个子列
为无穷等差数列?若存在,写出该子列的通项公式;若不存在,证明你的结论.
(1);(2)证明过程详见解析.

试题分析:本题主要考查等差数列、等比数列的定义、通项公式及其性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、逻辑推理能力.第一问,在数列的所有项中任意抽取几项,令其构成等比数列即可,但是至少抽取3项;第二问,分2种情况进行讨论:,利用数列的单调性,先假设存在,在推导过程中找出矛盾即可.
试题解析:(1)(若只写出2,8,32三项也给满分).           4分
(2)证明:假设能抽出一个子列为无穷等差数列,设为,通项公式为.因为
所以.
(1)当时,∈(0,1],且数列是递减数列,
所以也为递减数列且∈(0,1],,
,得
即存在使得,这与∈(0,1]矛盾.
(2)当时,≥1,数列是递增数数列,
所以也为递增数列且≥1,.
因为d为正的常数,且
所以存在正整数m使得.
,则
因为=
所以,即,但这与矛盾,说明假设不成立.
综上,所以数列不存在是无穷等差数列的子列.            13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列满足
(1)证明数列为等比数列,并求出数列的通项公式;
(2)若数列满足.证明:数列是等差数列.
(3)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正项数列的前项和满足:
(1)求数列的通项公式;
(2)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和为满足.
(1)函数与函数互为反函数,令,求数列的前项和
(2)已知数列满足,证明:对任意的整数,有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为锐角,且,函数,数列的首项.
(1)求函数的表达式;(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知公比不为1的等比数列的前项和为,且成等差数列.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面是关于公差的等差数列的四个命题:
   
  
其中的真命题为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知首项为正数的等差数列中,.则当取最大值时,数列的公差
        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列满足,则
A.B.C.D.

查看答案和解析>>

同步练习册答案