精英家教网 > 高中数学 > 题目详情
11.红、黄两支队员实力相当的乒乓球队进行擂台赛,已知每支队均有六名队员,规则如下:每支队给队员编号1,2,3,4,5,6,第一场双方1号比赛,负者被淘汰.然后负方队的2号与胜方队的1号再比赛,负者又被淘汰,一直这样进行下去,直到一方队员全被淘汰时,另一方获胜,则红队有3名队员波淘汰且最后战胜黄队的概率是(  )
A.$\frac{1}{11}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{10}{11}$

分析 设想有12个位置,双方队员按照淘汰的顺序坐,有${C}_{12}^{6}$种比赛结果,由红队有3名队员波淘汰且最后战胜黄队,知第11个位置和第12个位置是红队队员,第10个位置是黄队队员,由此能求出红队有3名队员波淘汰且最后战胜黄队的概率.

解答 解:设想有12个位置,双方队员按照淘汰的顺序坐,
有${C}_{12}^{6}$种坐法,也就是有${C}_{12}^{6}$种比赛结果,
∵红队有3名队员波淘汰且最后战胜黄队,
∴第11个位置和第12个位置是红队队员,第10个位置是黄队队员,有${C}_{9}^{6}$种坐法,
∴红队有3名队员波淘汰且最后战胜黄队的概率是p=$\frac{{C}_{9}^{6}}{{C}_{12}^{6}}$=$\frac{1}{11}$.
故选:A.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的偶函数f(x),对任意x∈R满足f(x+1)=f(-x+1),当6≤x≤7时,f(x)=1g(x-5);则方程f(x)-1gx=-1+1g5的实数根个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若函数f(x)=logax(0<a<1)在区间[2,8]上的最大值与最小值之差为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,2).
(1)求(2$\overrightarrow{a}$-$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$);
(2)设$\overrightarrow{c}$=(-3,λ),若$\overrightarrow{c}$与$\overrightarrow{a}$夹角为钝角,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有两等根.
(1)求f(x)的解析式.
(2)求f(x)在[0,t]上的最大值.
(3)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.
当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;
当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;
当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;
当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;
当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;
当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.
2015年12月某日某省x个监测点数据统计如下:
空气污染指数(单位:μg/m3[0,50](50,100](100,150](150,200]
监测点个数1540y10
(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(2)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良,从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x$.
(Ⅰ)求$f(\frac{π}{6})$的值;
(Ⅱ)当$x∈[-\frac{π}{2},0]$时,求f(x)的最小值以及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等腰梯形ABCD中,$\overrightarrow{AB}$=-2$\overrightarrow{CD}$,M为BC的中点,则$\overrightarrow{AM}$=(  )
A.$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$B.$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{2}\overrightarrow{AD}$C.$\frac{3}{4}\overrightarrow{AB}$+$\frac{1}{4}\overrightarrow{AD}$D.$\frac{1}{2}\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值.

查看答案和解析>>

同步练习册答案