【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2sin θ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3,),求|PA|+|PB|.
【答案】(1) x2+(y-)2=5(2) 3.
【解析】分析:(Ⅰ)由圆C的方程为ρ=2sin θ,能求出圆的直角方程;(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2-3t+4=0,再由点P的坐标为(3,),能求出|PA|+|PB|.
详解:
(1)由ρ=2sin θ,得x2+y2-2y=0,
即x2+(y-)2=5.
(2)将l的参数方程代入圆C的直角坐标方程,
得(3-t)2+(t)2=5,
即t2-3t+4=0.
由于Δ=(3)2-4×4=2>0,故可设t1,t2是上述方程的两实根,
所以
又直线l过点P(3,),
故由上式及t的几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2=3.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且过点.设为椭圆的右焦点, 为椭圆上关于原点对称的两点,连结并延长,分别交椭圆于两点.
(1)求椭圆的标准方程;
(2)设直线的斜率分别为,是否存在实数,使得?若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱。
(1)证明FO∥平面CDE;
(2)设BC=CD,证明EO⊥平面CDE。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是( )
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com