精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2sin θ.

(1)求圆C的直角坐标方程;

(2)设圆C与直线l交于点A、B,若点P的坐标为(3,),求|PA|+|PB|.

【答案】(1) x2+(y)2=5(2) 3.

【解析】分析:Ⅰ)由圆C的方程为ρ=2sin θ,能求出圆的直角方程;Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2-3t+4=0,再由点P的坐标为(3,),能求出|PA|+|PB|.

详解:

(1)由ρ=2sin θ,得x2y2-2y=0,

x2+(y)2=5.

(2)将l的参数方程代入圆C的直角坐标方程,

得(3-t)2+(t)2=5,

t2-3t+4=0.

由于Δ=(3)2-4×4=2>0,故可设t1t2是上述方程的两实根,

所以

又直线l过点P(3,),

故由上式及t的几何意义得|PA|+|PB|=|t1|+|t2|=t1t2=3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且过点.为椭圆的右焦点, 为椭圆上关于原点对称的两点,连结并延长,分别交椭圆于两点.

(1)求椭圆的标准方程;

(2)设直线的斜率分别为,是否存在实数,使得?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为2的正三角形,平面

(1)求证:平面平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱

(1)证明FO∥平面CDE

(2)设BC=CD证明EO⊥平面CDE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点Q在棱AB上.

(1)证明:平面.

(2)若三棱锥的体积为,求点B到平面PDQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的一元二次方程有实数根.

1)求实数m的取值范围;

2)当m=2时,方程的根为,求代数式的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义方程的实数根叫做函数的“新驻点”,若函数的“新驻点”分别为,则的大小关系为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案