精英家教网 > 高中数学 > 题目详情
已知△ABC中,角A,B,C的对边分别为a,b,c,C=
π
3
,b=5,△ABC的面积为10
3

(1)求a,c的值;  
(2)求sin(A+
π
3
)的值.
考点:两角和与差的正弦函数,余弦定理
专题:三角函数的求值
分析:(1)△ABC中,由题意可得
1
2
•a•5•sin
π
3
=10
3
,由此求得a的值,再由余弦定理求得c的值.
(2)由余弦定理可得cosA的值,可得 A的值,从而求得 sin(A+
π
3
)的值.
解答: 解:(1)△ABC中,∵C=
π
3
,b=5,△ABC的面积为10
3

1
2
•a•5•sin
π
3
=10
3
,求得a=8.
再由余弦定理可得c2=a2+b2-2ab•cos
π
3
=49,∴c=7.
(2)由余弦定理可得cosA=
b2+c2-a2
2bc
=
25+49-64
70
=
1
7
,∴sinA=
4
3
7

∴sin(A+
π
3
)=sinAcos
π
3
+cosAsin
π
3
=
4
3
7
×
1
2
+
1
7
×
3
2
=
5
3
14
点评:本题主要考查正弦定理和余弦定理的应用,两角和的正弦公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈(0,2)直线l1:ax-2y-2a+4=0与直线l2:2x+a2y-2a2-4=0与坐标轴围成一个四边形,求此四边形面积的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是实数,证明ac<0是关于x的方程ax2+bx+c=0有一个正根和一个负根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-2x.
(I)证明:对任意x∈R,f(x)>2x-6恒成立;
(Ⅱ)解不等式f(x)≤|x-1|+|x-2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
4
+y2=1.
(1)求此椭圆的焦点坐标和离心率;
(2)设此椭圆的左右焦点为F1,F2,过F2作x轴的垂线交椭圆于A、B两点,试求△ABF1的周长与面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=
1
4
,且nan+1-(n-1)an=anan+1.(n≥2,n∈N+
(1)求数列{an}的通项公式;
(2)证明:对一切n∈N+有a12+22+…+an2
7
6

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读下面材料:根据两角和与差的余弦公式,有
cos(α+β)=cosαcosβ-sinαsinβ①
cos(α-β)=cosαcosβ+sinαsinβ②
由①-②得 cos(α+β)-cos(α-β)=-2sinαsinβ
令 α+β=A,α-β=B,有α=
A+B
2
,β=
A-B
2
代入③得cosA-cosB=-2sin
A+B
2
sin
A-B
2

(1)类比上述推理方法,根据两角和与差的正弦公式,证明:sinA+sinB=2sin
A+B
2
cos
A-B
2

(2)若在△ABC的三个内角A,B,C,满足在cos2A-cos2B=1-cos2C试判断△ABC的形状.(提示:如需要可直接利用或参阅结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个正数,前三个数成等差数列,其和为48,后三个数成等比数列,其最后一个数为函数y=21-4x-x2的最大值,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
16
+
y2
7
=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为
 

查看答案和解析>>

同步练习册答案