精英家教网 > 高中数学 > 题目详情
已知a∈(0,2)直线l1:ax-2y-2a+4=0与直线l2:2x+a2y-2a2-4=0与坐标轴围成一个四边形,求此四边形面积的最小值?
考点:二次函数在闭区间上的最值,三角形的面积公式,两条直线的交点坐标
专题:函数的性质及应用
分析:求出其交点坐标.由l1:ax-2y-2a+4=0,l2:2x+a2y-2a2-4=0,令x=0,y=0得,l1:x=2-
4
a
,y=2-a;l2:x=a2+2,y=2+
4
a2
,由此能求出其面积的最小值.
解答: 解:两直线的交点
ax-2y-2a+4=0
2x+a2y-2a2-4=0
,解得
x=2
y=2

∴交点为(2,2);
由l1:ax-2y-2a+4=0,l2:2x+a2y-2a2-4=0,
令x=0,y=0得,l1:x=2-
4
a
,y=2-a;
l2:x=a2+2,y=2+
4
a2

则s=
1
2
(2-a)×2+
1
2
(2+a2)×2=a2-a+4=(a-
1
2
2+
15
4
15
4

所以 Smin=
15
4

此时a=
1
2
点评:本题考查两直线的交点坐标的求法和四边形面积的求法,解题时要认真审题,仔细解答,注意配方法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0),C(0,3),则△ABC底边AB的中线的方程是(  )
A、x=0
B、x=0(0≤y≤3)
C、y=0
D、y=0(0≤x≤2)

查看答案和解析>>

科目:高中数学 来源: 题型:

桌面上有形状大小相同的白球、红球、黄球各3个,相同颜色的球不加以区分,将此9个球排成一排共有
 
 种不同的排法.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1中,底面边长是2,侧棱长为4,M,N分别在AA1和CC1上,A1M=CN=1,P是BC中点.
(1)求四面体A1-PMN的体积;
(2)证明A1B∥平面PMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,求曲线ρ=cosθ+1与ρcosθ=2的公共点与极点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
m
=(a,c),
n
=(cosC,-sinA),
m
n
,其中a,b,c分别是△A,B,C中角A,B,C所对的边.
(Ⅰ)求角C的大小;
(Ⅱ)求
3
sinA-cos(B+
π
4
)的最大值,并求取得最大值时角A,B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1、F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程.
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB. 
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,C=
π
3
,b=5,△ABC的面积为10
3

(1)求a,c的值;  
(2)求sin(A+
π
3
)的值.

查看答案和解析>>

同步练习册答案