精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB. 
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)求该几何体的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)利用勾股定理的逆定理即可得到AC⊥CB,又AC⊥FB,利用线面垂直的判定定理即可证明;
(Ⅱ)利用分割法,即可求该几何体的体积.
解答: (Ⅰ)证明:在△ABC中,
∵AC=
3
,AB=2,BC=1,
∴AC2+BC2=AB2
∴AC⊥BC.
又∵AC⊥FB,BF∩CB=B,
∴AC⊥平面FBC.
( II)解:过D作DM⊥AB于M,过C作CN⊥AB于N
于是:V=VE-AMD+VEDM-FCN+VF-CNB=2VE-AMD+VEDM-FCN
∵AC=
3
,AB=2BC=2,
∴ED=CD=1,DM=
3
2

VE-AMD=
1
3
×SAMD×ED=
1
3
×
3
8
×1=
3
24
VEDM-FCN=SEDM×CD=
3
4
×1=
3
4

V=2×
3
24
+
3
4
=
3
3
点评:熟练掌握勾股定理的逆定理、线面垂直的判定定理、等腰梯形的性质、三棱锥的体积公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)在一个周期内的图象如图所示,M是这段图象的最高点,则φ=(  )
A、
π
3
B、
π
4
C、
π
6
D、
π
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈(0,2)直线l1:ax-2y-2a+4=0与直线l2:2x+a2y-2a2-4=0与坐标轴围成一个四边形,求此四边形面积的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P是平行四边形ABCD外一点,Q是PA的中点,求证:PC∥平面BQD.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C1,C2都是以原点O为对称中心,坐标轴为对称轴、离心率相等的椭圆,点M的坐标是(0,1),线段MN是曲线C1的短轴,并且是曲线C2的长轴,直线l:y=m(0<m<1)与曲线C1交于A,D两点(A在D的左侧),与曲线C2交于B,C两点(B在C的左侧).
(1)当m=
3
2
,|AC|=
5
4
时,求椭圆C1,C2的方程;
(2)当OC⊥AN,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A是函数f(x)=
x+1
+
2-x
的定义域,求函数g(x)=x2-2x当x∈A的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是实数,证明ac<0是关于x的方程ax2+bx+c=0有一个正根和一个负根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-2x.
(I)证明:对任意x∈R,f(x)>2x-6恒成立;
(Ⅱ)解不等式f(x)≤|x-1|+|x-2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个正数,前三个数成等差数列,其和为48,后三个数成等比数列,其最后一个数为函数y=21-4x-x2的最大值,求这四个数.

查看答案和解析>>

同步练习册答案