精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为234,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,

1)若左右手各取一球,求两只手中所取的球颜色不同的概率;

2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功。某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.

【答案】1;(2)分布列详见解析,

【解析】

试题分析:本题主要考查概率、离散型随机变量的分布列和数学期望等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,在总数中去掉左右手各取一球,所取颜色相同的情况,即所取颜色均为红色,均为黑色、均为白色的情况;第二问,先分别求出左右手所取的两球颜色相同的概率,再利用独立事件计算两次取球的获得成功的次数为0次、1次、2次的概率,列出分布列,利用计算数学期望.

试题解析:(1)设事件两手所取的球不同色, 则

依题意,的可能取值为012

左手所取的两球颜色相同的概率为

右手所取的两球颜色相同的概率为

所以X的分布列为:


0

1

2





练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】均为非负整数,在做的加法时各位均不进位(例如,),则称为“简单的”有序对,而称为有序数对的值,那么值为2964的“简单的”有序对的个数是( )

A. 525 B. 1050 C. 432 D. 864

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,点 P的极坐标是 ,曲线 C的极坐标方程为 .以极点为坐标原点,极轴为 x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线 l经过点P.
(1)写出直线 l的参数方程和曲线 C的直角坐标方程;
(2)若直线 l和曲线C相交于两点A,B,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,且直线是其图象的一条对称轴.

1)求函数的解析式;

2)在中,角所对的边分别为,且,若角满足,求的取值范围;

3)将函数的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数记作,已知常数,且函数内恰有个零点,求常数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:已知函数

Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;

Ⅱ)若a=1,求f(x)的极值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A{x|2x3}B{x|x+2)(xa)<0},则a1”AB____条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教育部门为了解全市高三学生的身高发育情况,从本市全体高三学生中随机抽取了100人的身高数据进行统计分析.经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身高不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.

(1)求该市高三学生身高高于1.70米的概率,并求图1中的值.

(2)若从该市高三学生中随机选取3名学生,记为身高在的学生人数,求的分布列和数学期望;

(3)若变量满足,则称变量满足近似于正态分布的概率分布.如果该市高三学生的身高满足近似于正态分布的概率分布,则认为该市高三学生的身高发育总体是正常的.试判断该市高三学生的身高发育总体是否正常,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于命题:存在一个常数,使得不等式对任意正数恒成立.

(1)试给出这个常数的值;

(2)在(1)所得结论的条件下证明命题

(3)对于上述命题,某同学正确地猜想了命题:“存在一个常数,使得不等式对任意正数恒成立.”观察命题与命题的规律,请猜想与正数相关的命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.
(1)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=﹣1时,求函数f(x)在区间[m,m+3](m>0)上的最值;
(3)证明:对一切x∈(0,+∞),都有 成立.

查看答案和解析>>

同步练习册答案