分析 先画出满足条件的平面区域,求出M的坐标,找出M附近的点的坐标,代入求出即可.
解答
解:设割成的1.8m和1.5m长的零件分别为x个、y个,利润为z元,
则z=20x+15y-(x+0.6y)即z=19x+14.4y且
$\left\{\begin{array}{l}{1.8x+1.5y≤18}\\{x+0.6y≤8}\\{x,y∈N}\end{array}\right.$
作出不等式组表示的平面区域如图:
由$\left\{\begin{array}{l}{1.8x+1.5y=18}\\{x+0.6y=8}\end{array}\right.$,解得:M($\frac{20}{7}$,$\frac{60}{7}$),
∵x、y为自然数,在可行区域内找出与M最近的点为(3,8),此时z=19×3+14.4×8=172.2(元),
又可行域的另一顶点是(0,12),过(0,12)的直线使z=19×0+14.4×12=172.8(元),
过顶点(8,0)的直线使z=19×8+14.4×0=152(元),
M(7(20),7(60))附近的点(1,10)、(2,9),
直线z=19x+14.4y过点(1,10)时,z=163;过点(2,9)时z=167.6,
∴当x=0,y=12时,z=172.8元为最大值;
答:只要截1.5m长的零件12个,就能获得最大利润.
点评 本题考查了简单的线性规划问题,考查函数的最值问题,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3(C${\;}_{4}^{1}$C${\;}_{4}^{3}$+C${\;}_{4}^{2}$C${\;}_{4}^{2}$)对 | B. | 3(C${\;}_{8}^{4}$-12)对 | ||
| C. | 3(C${\;}_{8}^{4}$-6)对 | D. | 3C${\;}_{8}^{4}$对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com