精英家教网 > 高中数学 > 题目详情
12.数集P={x|x=(2n+1)π,n∈Z}与数集Q={x|x=(4m±1)π,m∈Z}之间的关系是(  )
A.P⊆QB.P=QC.Q⊆PD.P≠Q

分析 由题意,集合P中的元素都在集合Q中,集合Q中的元素都在集合P中,从而得到集合P与Q的关系.

解答 解:由题意可知,
集合P中的元素都在集合Q中,
集合Q中的元素都在集合P中,
故P=Q.
故选B.

点评 本题考查了集合关系的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列命题中正确的是(  )
A.若α>β,则sinα>sinβ
B.命题:“?x>1,x2>1”的否定是“?x≤1,x2≤1”
C.已知函数f(x)=x3+ax2+bx+c,若f(x)在区间(-1,0)上单调递减,则a2+b2的取值范围为$[{\frac{9}{5},+∞})$
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知圆(x-a)2+y2=4与射线y=$\sqrt{3}$x(x≥0)没有公共点,则实数α的取值范围是{a|a<-2或a>$\frac{4}{3}\sqrt{3}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{1}{2}a{x^2}-({2a+1})x+2lnx$.
(1)若函数y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)若a>0,求函数y=f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$的图象上存在不同的两点A,B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{4}$)B.(2,+∞)C.(-2,$\frac{1}{4}$)D.(-∞,2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了了解青少年的肥胖情况是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:
常喝不常喝总计
肥胖2
不肥胖18
总计30
已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为$\frac{4}{15}$.
(1)请将上面的列联表补充完整.
(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
(3)若这30名青少年中,常喝碳酸饮料且肥胖的有2名女生,则从常喝碳酸饮料且肥胖的青少年中随机抽取2名,恰好抽到一男一女的概率是多少?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a-b)(c+d)(a-c)(b+d)}$,其中n=a+b+c+d)
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=xlnx的单调递增区间是(  )
A.(-∞,e-1B.(0,e-1C.(e-1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若cosα<0,tanα>0,则角α是第三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)的图象上任意一点A(x,y)的坐标满足条件|x|≥|y|,称函数f(x)具有性质P,下列函数中,具有性质P的是(  )
A.f(x)=x2B.f(x)=$\frac{1}{{x}^{2}+1}$C.f(x)=sinxD.f(x)=ln(x+1)

查看答案和解析>>

同步练习册答案