精英家教网 > 高中数学 > 题目详情
4.函数y=xlnx的单调递增区间是(  )
A.(-∞,e-1B.(0,e-1C.(e-1,+∞)D.(e,+∞)

分析 求出f(x)的导函数,令导函数大于0列出不等式,根据对数函数的运算法则求出不等式的解集即为函数的递增区间.

解答 解:求导得:f′(x)=lnx+1,
令f'(x)>0,即lnx+1>0,
解得:x>$\frac{1}{e}$,
∴f(x)的单调递增区间是 ($\frac{1}{e}$,+∞),
故选:C.

点评 此题考查了利用导数研究函数的单调性,要求学生掌握导函数的正负与函数单调性的关系,即当导函数值大于0时,函数单调递增;当导函数小于0时,函数单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(ωx+φ)$(ω>0,|φ|<\frac{π}{2})$,其图象相邻两对称轴之间的距离为$\frac{π}{2}$,且函数$f(x+\frac{π}{12})$是偶函数,则下列结论正确的是(  )
A.f(x)在$[{\frac{3π}{4},π}]$上单调递增B.f(x)的最小正周期为2π
C.f(x)的图象关于点$(\frac{7π}{12},0)$对称D.f(x)的图象关于直线$x=-\frac{7π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对任意的正整数n,2n与n2的大小关系为(  )
A.当n>2时,22n>n2B.当n>3时,2n>n2C.当n>4时,2n>n2D.当n>5时,2n>n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数集P={x|x=(2n+1)π,n∈Z}与数集Q={x|x=(4m±1)π,m∈Z}之间的关系是(  )
A.P⊆QB.P=QC.Q⊆PD.P≠Q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,已知向量$\overrightarrow{AB}$=(cos18°,cos72°),$\overrightarrow{BC}$=(2cos63°,2cos27°),则$|{\overrightarrow{AB}}|$=1,$|{\overrightarrow{BC}}|$=2,△ABC的面积为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}的前n项和为Sn,a3,a7是方程2x2-12x+c=0的两根,且S13=c,则数列{an}的公差为$-\frac{3}{2}$或$-\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在(0,1)内任取一个实数b,则使得方程x2-x+b=0有实数根的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线$\left\{{\begin{array}{l}{x={x_0}+tcosα}\\{y={y_0}+tsinα}\end{array}}\right.$(t为参数,α是直线的倾斜角)上有两点P1,P2,它们所对应的参数值分别是t1,t2,则|P1P2|等于(  )
A.t1+t2B.|t1|+|t2|C.|t1+t2|D.|t1-t2|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某同学利用课余时间做了一次社交软件使用习惯调查,得到2×2列联表如下:
偏爱微信偏爱QQ合计
30岁以下4812
30岁以上16218
合计201030
则下列结论正确的是(  )
A.在犯错误的概率不超过0.005的前提下认为社交软件使用习惯与年龄有关
B.在犯错误的概率超过0.005的前提下认为社交软件使用习惯与年龄有关
C.在犯错误的概率不超过0.001的前提下认为社交软件使用习惯与年龄有关
D.在犯错误的概率超过0.001的前提下认为社交软件使用习惯与年龄有关

查看答案和解析>>

同步练习册答案