分析 根据向量的模长=$\sqrt{{x}^{2}+{y}^{2}}$可得答案.在根据向量加减的运算求出$\overrightarrow{AC}$,可得|$\overrightarrow{AC}$|,即可求出三角形的面积.
解答 解:向量$\overrightarrow{AB}$=(cos18°,cos72°),$\overrightarrow{BC}$=(2cos63°,2cos27°),
则$|{\overrightarrow{AB}}|$=c=$\sqrt{co{s}^{2}18°+co{s}^{2}72°}=1$,
$|{\overrightarrow{BC}}|$=a=$\sqrt{4co{s}^{2}63°+4co{s}^{2}27°}=\sqrt{4}=2$,
∵$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$=(2cos63°+cos18°,2cos27°+cos72°)
可得|$\overrightarrow{AC}$|=b=$\sqrt{(2cos63°+cos18°)^{2}+(2cos27°+cos72°)^{2}}$)=$\sqrt{5+2\sqrt{2}}$
由余弦定理,可得cosB=-$\frac{\sqrt{2}}{2}$,则sinB=$\frac{\sqrt{2}}{2}$
则△ABC的面积S=$\frac{1}{2}$acsinB=$\frac{\sqrt{2}}{2}$.
故答案为:1,2,$\frac{\sqrt{2}}{2}$.
点评 本题考查了向量的模长的计算和向量加减的运算,以及三角形面积的求法.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{4}$) | B. | (2,+∞) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,2)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5或-3 | B. | 2或6 | C. | 5或3 | D. | $\sqrt{5}$或$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 题号 | 1 | 2 | 3 | 4 | 5 |
| 考前预估难度Pi | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
| 题号 学生编号 | 1 | 2 | 3 | 4 | 5 |
| 1 | × | √ | √ | √ | √ |
| 2 | √ | √ | √ | √ | × |
| 3 | √ | √ | √ | √ | × |
| 4 | √ | √ | √ | × | × |
| 5 | √ | √ | √ | √ | √ |
| 6 | √ | × | × | √ | × |
| 7 | × | √ | √ | √ | × |
| 8 | √ | × | × | × | × |
| 9 | √ | √ | √ | × | × |
| 10 | √ | √ | √ | √ | × |
| 题号 | 1 | 2 | 3 | 4 | 5 |
| 实测答对人数 | |||||
| 实测难度 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com