精英家教网 > 高中数学 > 题目详情
12.已知抛物线C:y2=4x的焦点是F,过点F的直线与抛物线C相交于P、Q两点,且点Q在第一象限,若2$\overrightarrow{PF}$=$\overrightarrow{FQ}$,则直线PQ的斜率是(  )
A.$\frac{\sqrt{2}}{4}$B.1C.$\sqrt{2}$D.2$\sqrt{2}$

分析 过点P,Q分别作抛物线的准线l:x=-1的垂线,垂足分别是P1、Q1,由抛物线的|Q1Q|=|QF|定义可知,|P1P|=|FP|,设|PF|=k(k>0),则|FQ|=2k,在直角△PRQ中求解直线PQ的倾斜角即可求得直线PQ斜率.

解答 解:过点P,Q分别作抛物线的准线l:x=-1的垂线,垂足分别是P1、Q1
由抛物线的定义可知,|Q1Q|=|QF|,|P1P|=|FP|,
设|PF|=k(k>0),2$\overrightarrow{PF}$=$\overrightarrow{FQ}$,则|FQ|=2k,|PQ|=3k,又过点P作PR⊥Q1Q于点R,
则在直角△PRQ中,|RQ|=k,|PQ|=3k,
丨PR丨=$\sqrt{丨PQ{丨}^{2}-丨QR{丨}^{2}}$=2$\sqrt{2}$,
由∠PQR与直线QP的倾斜角相等,
则直线PQ的斜率k=tan∠PQR=$\frac{丨PR丨}{丨QR丨}$=2$\sqrt{2}$,
∴直线PQ的斜率是2$\sqrt{2}$,
故选:D.

点评 本题考查抛物线的简单几何性质及抛物线定义的应用,考查数形结合思想以及计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在正方体ABCD-A1B1C1D1中,已知$\overrightarrow{{A}_{1}A}$=$\overrightarrow{a}$,$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{b}$,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{c}$,O为底面ABCD中心,G为△D1C1O重心,则$\overrightarrow{AG}$=(  )(用$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示)
A.$\frac{5}{6}\overrightarrow c-\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow a$B.$\frac{5}{6}\overrightarrow c+\frac{1}{2}\overrightarrow b+\frac{2}{3}\overrightarrow a$C.$\frac{5}{6}\overrightarrow c+\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow a$D.$\frac{5}{6}\overrightarrow c-\frac{1}{2}\overrightarrow b+\frac{2}{3}\overrightarrow a$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在一次射击训练中,某战士连续射击了两次.设命题p是“第一次射击击中目标”,q是“第二次击中目标”.则用p,q以及逻辑联结词(¬,∧,∨)表示“两次都没有击中目标”为(?p)∧(?q)或?(p∨q).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点M、N.若以椭圆的焦点为顶点,以椭圆长轴的顶点为焦点作一双曲线恰为等轴双曲线.
(1)求椭圆的离心率;
(2)设L为过椭圆右焦点N的直线,交椭圆于P、Q两点,当△MPQ周长为8时;求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.“x<-1”是“x2-x-2>0”的必要不充分条件
B.“P且Q”为假,则P假且 Q假
C.命题“ax2-2ax+3>0恒成立”是真命题,则实数a的取值范围是0≤a<3
D.命题“若x2-3x+2=0,则x=2”的否命题为“若x2-3x+2=0,则x≠2”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.命题p:方程$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{m-1}$=1表示焦点在x轴上的双曲线.命题q:直线y=x+m与抛物线y2=4x有公共点.
若“p∨q”为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,${a^2}+{c^2}-{b^2}=\sqrt{3}bc$,则cosA+sinC的取值范围为(  )
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\frac{1-x}{1+x}$
(1)试证明f(x)在(-∞,1)上为单调递减函数;
(2)若函数g(x)=($\frac{1}{2}$)f(x),且g(x)在区间[-3,-2]上没有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α,β,γ为不同的平面,m,n为不同的直线,则m⊥β的一个充分条件是(  )
A.α∩γ=m,α⊥γ,β⊥γB.α⊥β,β⊥γ,m⊥αC.α⊥β,α∩β=n,m⊥nD.n⊥α,n⊥β,m⊥α

查看答案和解析>>

同步练习册答案