精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若曲线在点处的切线与直线平行,求的值;

(2)若,求函数在区间上的最小值.

【答案】(1)1(2)见解析

【解析】试题分析:(1)本问主要考查导数几何意义,由于曲线在点处的切线与直线平行,根据两直线平行斜率相等得,对函数求导,带入,即可求出的值;(2)本问考查利用导数研究函数最值, ,显然时, ,然后对进行讨论,分别讨论 在区间上的单调性,进而可以求出最小值.这里重点考查分类讨论思想方法在解题中的应用.

试题解析: .

(1)由题意可得,解得,此时

在点处的切线为,与直线平行.

故所求的值为

(2),可得.

时, 上恒成立,所以上递增,

所以上的最小值为.

②当时, 的变化情况如下:

-

+

极小

由上表可知的最小值为.

综上可知:

时, 上的最小值为

时, 上的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x-1|+|x-2a|.

(1)当a=1时,求f(x)≤3的解集;

(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a是实数,函数f(x)= (x-a).

(1)求函数f(x)的单调区间;

(2)设g(a)为f(x)在区间[0,2]上的最小值.

①写出g(a)的表达式;

②求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下是解决数学问题的思维过程的流程图:

在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )

A. ①—分析法,②—反证法 B. ①—分析法,②—综合法

C. ①—综合法,②—反证法 D. ①—综合法,②—分析法

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式-kx+1≤0的解集非空,则k的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆经过椭圆)的左右焦点,与椭圆在第一象限的交点为,且三点共线.

)求椭圆的方程;

)设与直线为原点)平行的直线交椭圆两点.当的面积取到最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同

(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,七个白球的概率;

(2)采用放回抽样,每次随机抽取一球,连续取3次,求至少有1次取到红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象上点处的切线方程与直线平行(其中),.

(Ⅰ)求函数的解析式;

(Ⅱ)求函数)上的最小值;

(Ⅲ)对一切 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的最小正周期

(2)设,若上的值域为,求实数的值;

(3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案