精英家教网 > 高中数学 > 题目详情
17.在△ABC中,角A,B,C所对边分别为a,b,c,若a,b,c成等比数列,且A=60°,则$\frac{bsinB}{c}$(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

分析 由a,b,c成等比数列,可得$\frac{b}{c}=\frac{a}{b}$.代入再利用正弦定理可得$\frac{bsinB}{c}$=$\frac{asinB}{b}$=sinA,即可得出.

解答 解:∵a,b,c成等比数列,
∴$\frac{b}{c}=\frac{a}{b}$.
∴$\frac{bsinB}{c}$=$\frac{asinB}{b}$=sinA=sin60°=$\frac{\sqrt{3}}{2}$.
故选:C.

点评 本题考查了等比数列的性质、正弦定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,点$(n,\frac{{S}_{n}}{n})$在直线y=$\frac{1}{2}x+\frac{11}{2}$上,数列{bn}为等差数列,且b3=11,前9项和为153.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=$\frac{3}{(2{a}_{n}-11)(2{b}_{n}-1)}$,数列{cn}的前n项和为Tn,求使不等式Tn>$\frac{k}{57}$对一切的n∈N*都成立的最大整数k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-1|-|2x-3|.
(1)已知f(x)≥m对0≤x≤3恒成立,求实数m的取值范围;
(2)已知f(x)的最大值为M,a,b∈R+,a+2b=Mab,求a+2b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若(x2$+\frac{1}{x}$)n的展开式中二项式系数之和为64,则n等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面的程序运行后的作用是(  )
A.输出两个变量A和B的值
B.把变量A的值赋给变量B,并输出A和B的值
C.把变量B的值赋给变量A,并输出A和B的值
D.交换两个变量A和B的值,并输出交换后的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(-2,2),则下列结论正确的是(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$⊥$\overrightarrow{b}$C.$\overrightarrow{a}$⊥($\overrightarrow{a}$$-\overrightarrow{b}$)D.$\overrightarrow{b}$⊥($\overrightarrow{a}$$+\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点M(-2,b)在不等式2x-3y+5<0表示的平面区域内,则b的取值范围是(  )
A.b>$\frac{1}{3}$B.b>-9C.b<1D.b≤$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=${∫}_{0}^{1}$$\sqrt{x}$dx,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$x3dx,则a,b,c的大小关系为(  )
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足z+i=$\frac{1+i}{i}$(i为虚数单位),则$\overline{z}$=(  )
A.-1+2iB.-1-2iC.1+2iD.1-2i

查看答案和解析>>

同步练习册答案