精英家教网 > 高中数学 > 题目详情
2.已知函数 f(x)=$\frac{a}{x}+xlnx,g(x)={x^3}-{x^2}$-5,若对任意的 ${x_1},{x_2}∈[{\frac{1}{2},2}]$,都有f(x1)-g(x2)≥2成立,则a的取值范围是(  )
A.(0,+∞)B.[1,+∞)C.(-∞,0)D.(-∞,-1]

分析 根据不等式恒成立,利用参数分类法进行转化为a≥x-x2lnx在$\frac{1}{2}$≤x≤2上恒成立,构造函数h(x)=x-x2lnx,求函数的导数,利用函数单调性和导数之间的关系求出函数的最值即可.

解答 解:函数g(x)的导数g′(x)=3x2-2x=x(3x-2),∴函数g(x)在[$\frac{1}{2}$,$\frac{2}{3}$]上递减,则[$\frac{2}{3}$,2]上递增,
g([$\frac{1}{2}$)=$\frac{1}{8}-\frac{1}{4}-5=-\frac{41}{8}$,g(2)=8-4-5=-1,
若对任意的 ${x_1},{x_2}∈[{\frac{1}{2},2}]$,都有f(x1)-g(x2)≥2成立,
即当$\frac{1}{2}$≤x≤2时,f(x)≥1恒成立,
即$\frac{a}{x}+xlnx≥1$恒成立,
即a≥x-x2lnx在$\frac{1}{2}$≤x≤2上恒成立,
令h(x)=x-x2lnx,则h′(x)=1-2xlnx-x,h′′(x)=-3-2lnx,
当在$\frac{1}{2}$≤x≤2时,h′′(x)=-3-2lnx<0,
即h′(x)=1-2xlnx-x在$\frac{1}{2}$≤x≤2上单调递减,
由于h′(1)=0,
∴当$\frac{1}{2}$≤x≤1时,h′(x)>0,
当1≤x≤2时,h′(x)<0,
∴h(x)≤h(1)=1,
∴a≥1.
故选:B.

点评 本题主要考查不等式恒成立问题,构造函数利用参数分离法结合函数单调性和导数之间的关系转化为求函数的最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若M=sin12°cos57°-cos12°sin57°,N=cos10°cos55°+sin10°sin55°,则以下判断正确的是(  )
A.M>NB.M=NC.M+N=0D.MN=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数y=asinx-bcosx(ab≠0)的图象的一条对称轴为$x=\frac{π}{4}$,则以$\overrightarrow a=(a,b)$为方向向量的直线的倾斜角为$\frac{3}{4}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给定区域D:$\left\{\begin{array}{l}{2x-y+k≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,(k为非负实数),若对于区域D内的任意一个点M(x,y),恒有2x-5y+10k+15>0成立;且在区域D内存在点N(x0,y0),满足-7x0+2y0-5k2+2>0,则实数k的取值范围是(  )
A.[0,1)B.($\frac{1}{5}$,1)C.[0,$\frac{1}{5}$)D.($\frac{1}{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y+2≥0}\end{array}\right.$则目标函数z=|x+3y|的最大值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}的前n项和记为Sn,对任意的正整数n,均有4Sn=(an+1)2,且an>0.
(1)求a1及{an}的通项公式;
(2)令b${\;}_{n}=(-1)^{n-1}\frac{4n}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等差数列{an}中,已知d=3,且a1+a3+a5+…+a99=80,求前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=(1-ax)ln(x+1)-bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点
(1)求常数b的值
(2)当0≤x≤1时,关于x的不等式f(x)≥0恒成立,求实数a的取值范围
(3)求证:对于任意的正整数n,不等式(1+$\frac{1}{n}$)n$<e<(1+\frac{1}{n})^{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设O为坐标原点,点$A({\frac{1}{4},1}),若M({x,y})$满足不等式组$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}\right.,则\overrightarrow{OM}•\overrightarrow{OA}$的最小值是$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案