| A. | 16$\sqrt{2}$ | B. | 6$\sqrt{2}$ | C. | 12$\sqrt{2}$ | D. | 32$\sqrt{2}$ |
分析 在一个棱长为12的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,说明正方体在正四面体的内切球内,求出内切球的直径,就是正方体的对角线的长,然后求出正方体的棱长.
解答 解:设正四面体的内切球的半径为:r,由正四面体的体积得:
4×$\frac{1}{3}$×r×$\frac{\sqrt{3}}{4}$×122=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×122×$\sqrt{1{2}^{2}-(\frac{2}{3}×\frac{\sqrt{3}}{2}×12)^{2}}$,
所以r=$\sqrt{6}$,
设正方体的最大棱长为a,
∴3a2=(2$\sqrt{6}$)2,
∴a=2$\sqrt{2}$,
∴正方体的体积最大值是16$\sqrt{2}$.
故选:A.
点评 本题是中档题,考查正四面体的内接球的知识,球的内接正方体的棱长的求法,考查空间想象能力,转化思想,计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{2}$+1 | C. | 2$\sqrt{2}$+2 | D. | 2$\sqrt{2}$+3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$ | D. | $-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1.2 | B. | 1.35 | C. | 1.43 | D. | 1.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com