精英家教网 > 高中数学 > 题目详情
5.已知sinα=$\frac{3}{4}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,则cosα-sinα的值是$\frac{\sqrt{7}-3}{4}$.

分析 根据同角三角函数的基本关系求出cosα的值,即可求出结果.

解答 解:∵sinα=$\frac{3}{4}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{\sqrt{7}}{4}$,
∴cosα-sinα=$\frac{\sqrt{7}-3}{4}$.
故答案为:$\frac{\sqrt{7}-3}{4}$.

点评 此题主要考查了同角三角函数的基本关系在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在锐角三角形△ABC中,已知a=6,c=2$\sqrt{3}$,△ABC的面积为3$\sqrt{3}$,则∠B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{2+sin2x}{2-2sin2x}$的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,复数z满足(z-2i)(3+i)=10,则z=(  )
A.3-iB.3+iC.-3-iD.-3+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=cosx•cos2x•cos4x,若f(α)=$\frac{1}{8}$,则角α不可能等于(  )
A.$\frac{π}{9}$B.$\frac{2π}{9}$C.$\frac{2π}{7}$D.$\frac{4π}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,1),若$\overrightarrow{a}$和$\overrightarrow{b}$的夹角为锐角,则m的取值范围为{m|m>-2且m≠$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义“θ1⊕θ2”是将角θ1的终边按照逆时针方向旋转到与角θ2的终边重合所转动的最小正角.则-$\frac{7π}{6}$⊕$\frac{4π}{3}$等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的中心为原点O,左、右焦点分别为F1、F2,离心率为$\frac{5}{4}$,且过点M(5,$\frac{9}{4}$),又P点是直线x=$\frac{{a}^{2}}{5}$上任意一点,点Q在双曲线E上,且满足$\overrightarrow{P{F}_{2}}•\overrightarrow{Q{F}_{2}}$=0.
(1)求双曲线的方程;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)若点P的纵坐标为1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足$\frac{|PM|}{|PN|}=\frac{|MH|}{|HN|}$,证明点H恒在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线斜率为l时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{10}$)C.($\sqrt{2}$,$\sqrt{10}$)D.($\sqrt{5}$,$\sqrt{10}$)

查看答案和解析>>

同步练习册答案