精英家教网 > 高中数学 > 题目详情
函数 = 的最大值为(     )
A.B.C.eD.
D

试题分析:解:因为
时,上为增函数;
时,上为增函数;
所以当时,取最大值
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知ab∈R,函数f(x)=a+ln(x+1)的图象与g(x)=x3x2bx的图象在交点(0,0)处有公共切线.
(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;
(2)设-1<x1x2,当x∈(x1x2)时,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x >0时,ex>x2-2ax+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的单调区间,并证明对[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)将y=f(x)的图像向下平移a(a>0)个单位,同时将y=g(x)的图像向上平移b(b>0)个单位,使它们恰有四个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9都相切,则a等于(  )
A.-1或-B.-1或
C.-或-D.-或7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在(上的非负可导函数f(x)满足xf′(x),对任意正数,若满足,则必有(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)满足f(1)=1且对一切x∈R都有f′(x)<4,则不等式f(x)>4x-3的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的定义域为,部分对应值如下表, 的导函数的图象如图所示. 下列关于的命题:

-1
0
4
5

1
2
2
1

①函数的极大值点为
②函数上是减函数;
③如果当时,的最大值是2,那么的最大值为4;
④当时,函数个零点;
⑤函数的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=cos2,则f=________.

查看答案和解析>>

同步练习册答案