精英家教网 > 高中数学 > 题目详情
11.已知集合A={x|y=ln(x2-x)},B={x|x2-9≤0},则A∩B=(  )
A.[-3,0]∪[1,3]B.[-3,0)∪(1,3]C.(0,1)D.[-3,3]

分析 求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可.

解答 解:由A中y=ln(x2-x),得到x2-x>0,即x<0,或x>1,
∴A=(-∞,0)∪(1,+∞),
由B中的不等式变形得:(x-3)(x+3)≤0,
解得:-3≤x≤3,即B=[-3,3],
则A∩B=[-3,0)∪(1,3].
故选:B

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设n∈N*,f(n)=1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$,试比较f(n)与$\sqrt{n+1}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R恒有f(x)>f′(x),a=3f(ln2),b=2f(ln3),则有(  )
A.a>bB.a=b
C.a<bD.a,b大小关系不能判断

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(x)的图象关于直线x=1对称,且在[1,+∞)上单调递减,f(0)=0,则f(x+1)>0的解集为(  )
A.(1,+∞)B.(-1,1)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}{x-2y≤1}\\{x+4y≤4}\\{x+y≥a}\end{array}\right.$,当z=-2x+y取得最大值为1时,那么x2+y2的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1)、(1,1,0)、(0,1,0)、(1,1,1),则该四面体的外接球的体积为(  )
A.$\frac{\sqrt{3}}{2}$πB.πC.$\sqrt{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.首项为正数的等差数列{an}满足5a6=3a3,则前n项和Sn中最大项为(  )
A.S9B.S10C.S11D.S12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.车流量被定义为单位时间内通过的十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量有函数F(t)=60+3sin$\frac{t}{3}$(其中0≤t≤20)给出,F(t)的单位是辆/分,t的单位是分,则在下列哪个时间段内车流量是增加的(  )
A.[15,20]B.[10,15]C.[5,10]D.[0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a,b∈N*,f(a+b)=f(a)f(b),f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+…+$\frac{f(2012)}{f(2011)}$=4022.

查看答案和解析>>

同步练习册答案