精英家教网 > 高中数学 > 题目详情
13.某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:
x246810
y40507090100
(1)请根据上表提供的数据,用最小二乘法求出y关于x 的线性回归方程$\stackrel{∧}{y}$=bx+a

p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(其中:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$ )求回归直线方程.
(2)据此估计广告费用为12时,销售收入y的值.

分析 (1)首先做出x,y的平均数,代入b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$,求出线性回归直线的方程的系数,写出回归直线的方程,
(2)将x=12代入回归方程得出y,即销售收入y的估计值.

解答 解:(1)由题意知$\overline{x}=\frac{2+4+6+8+10}{5}=6$,$\overline{y}=\frac{40+50+70+90+100}{5}=70$
$\widehat{b}=\frac{(80+200+420+720+1000)-5×6×70}{(4+16+36+64+100)-5×36}$=8
a=$\overline{y}$-b$\overline{x}$=70-8×6=22,
所以回归直线方程为:$\stackrel{∧}{y}$=8x+22;
(2)当x=12时y=118,因此估计得到当广告费用为12万元时销售收入为118万元.

点评 本题考查回归直线方程的应用,回归直线方程的求法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=ex,g(x)=ax2-ax.若曲线y=f(x)上存在两点关于直线y=x的对称点在曲线y=g(x)上,则实数a的取值范围是(  )
A.(0,1)B.(1,+∞)C.(0,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在1907年的一项关于16艘轮船的研究中,船的吨位区间从192t~3246t,船员的人数从5人到32人,由船员人数关于吨位的回归分析得到如下结果:$\widehat{y}$=9.5+0.0062x,假定的两艘轮船的吨位相差1000t,船员平均人数相差6人,对于最小的船估计的船员人数是11人,对于最大的船估计的船员人数是31人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC-A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则$\frac{m}{n}$的取值范围是(  )
A.(1,$\frac{2\sqrt{3}}{3}$)B.($\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{3}}{3}$)C.($\frac{2\sqrt{3}}{3}$,$\sqrt{3}$)D.($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}满足:a1=2,当n∈N*,n>1时,a2+a3+…+an=4(an-1-1).
(Ⅰ)求a2,a3,并证明,数列{an+1-2an}为常数列;
(Ⅱ)设cn=$\frac{1}{2({a}_{n}+\frac{1}{{a}_{n}})+5}$,若对任意n∈N*,2a<c1+c2+…+cn<10a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.为了解高中生对电视台某节目的态度,在某中学随机调查了110名学生,得到如下列联表:
总计
喜欢402060
不喜欢203050
总计6050110
由${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$算得${K^2}=\frac{{110×{{({40×30-20×20})}^2}}}{60×50×60×50}≈7.8$.
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别无关”
C.有99%以上的把握认为“喜欢该节目与性别有关”
D.有99%以上的把握认为“喜欢该节目与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f($\frac{1}{{2}^{n+1}}$)=$\frac{1}{2}$f($\frac{1}{{2}^{n}}$)-$\frac{1}{{2}^{n+1}}$,f($\frac{1}{2}$)=-$\frac{1}{2}$,令Un=$\frac{f(\frac{1}{{2}^{n}})}{n}$,则{Un}的前n项和Tn=$\frac{1}{{2}^{n}}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=|log4x|,实数m、n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]的最大值为2,则$\frac{n}{m}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$+2$\overrightarrow{b}$=(2,-4),3$\overrightarrow{a}$-$\overrightarrow{b}$=(-8,16),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的大小为π.

查看答案和解析>>

同步练习册答案