精英家教网 > 高中数学 > 题目详情
已知x,y满足约束条件
x-y≤0
x+y-1≥0
x-2y+2≥0
,则z=x+3y的最小值为(  )
A、1B、2C、3D、4
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即看得到z的最小值.
解答: 解:作出不等式组对应的平面区域如图:
由z=x+3y得y=-
1
3
x+
1
3
z,
平移直线y=-
1
3
x+
1
3
z,
由图象可知当直线y=-
1
3
x+
1
3
z经过点A时,y=-
1
3
x+
1
3
z的截距最小,此时z最小.
x-y=0
x+y-1=0

解得
x=
1
2
y=
1
2
,即A(
1
2
1
2
),
代入z=x+3y=
1
2
+
1
2
=2.
即目标函数z=x+3y最小值为2.
故选:B.
点评:本题主要考查线性规划的应用,利用z的几何意义结合数形结合,即可求出z的最小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
1
bn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0
y≥0
,则目标函数z=2x+y最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由200名学生的某次数学考试成绩绘制成了频率分布直方图(如图).由图可知在该次数学考试中成绩小于60分的学生数是(  )
A、600B、60C、40D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线f(x)=xsinx+1在x=
π
2
处的切线与直线ax+2y+1=0互相垂直,则(ax2-
1
x
)5
展开式中x的系数为(  )
A、40B、-10
C、10D、-40

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体的一条对角线和同一顶点上的三条棱中的两条所成的角为60°、45°,则它和另一条棱所成的角为(  )
A、30°B、60°
C、45°D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:
一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)[200,+∞)
顾客人数m2030n10
统计结果显示100位顾客中购物款不低于100元的顾客占60%,据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).(注:视频率为概率)
(Ⅰ)试确定m,n的值,并估计该商场每日应准备纪念品的数量;
(Ⅱ)为了迎接店庆,商场进行让利活动,一次购物款200元及以上的一次返利30元;一次性购物款小于200元的按购物款的百分比返利,具体见下表:
一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)
返利百分比06%8%10%
请估计该商场日均让利多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax-2,(a∈R)
(l)若f(x)在区间(1,+∞)上是增函数,求实数a的取值范围;
(2)若g(x)=
f′(x)-a,x≤0
1
x
, x>1
,且f(x0)=3,求x0的值.
(3)若g(x)=
af′(x-1),x≤1
1
x
,x>1
,且在R上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某个部件由三个元件如图方式连接而成,元件A或元件B正常工作,且元件C正常工作,则部件正常工作.若3个元件的次品率均为
1
3
,且各个元件相互独立,那么该部件的次品率为
 

查看答案和解析>>

同步练习册答案