精英家教网 > 高中数学 > 题目详情
20.一个几何体的三视图如图所示(单位:m),则该几何体的表面积为(单位:m2)(  )
A.(11+$4\sqrt{2}$)πB.(12+4$\sqrt{2}$)πC.(13+4$\sqrt{2}$)πD.(14+4$\sqrt{2}$)π

分析 由已知中的三视图,可知该几何体是一个圆柱和圆锥组成的组合体,分别求出各个面的面积,相加可得答案.

解答 解:由已知中的三视图,可知该几何体是一个圆柱和圆锥组成的组合体,
圆柱的底面直径为2,故底面周长为2π
圆柱的高为4,故圆柱的侧面积为8π,
圆锥的底面直径为4,故底面半径为2,底面面积S=4π,
圆锥的高h=2,故母线长为2$\sqrt{2}$,
故圆锥的侧面积为:4$\sqrt{2}π$,
组合体的表面积等于圆锥的底面积与圆锥的侧面积及圆柱侧面积的和,
故组合体的表面积S=(12+4$\sqrt{2}$)π,
故选:B

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)证明:①C${\;}_{n}^{r}$+C${\;}_{n}^{r+1}$=C${\;}_{n+1}^{r+1}$;②C${\;}_{2n+2}^{n+1}$=2C${\;}_{2n+1}^{n}$(其中n,r∈N*,0≤r≤n-1);
(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>$\frac{1}{2}$),首先赢满n+1局者获胜(n∈N*).
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设复数z=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则满足zn=z的大于1的正整数n中,最小是(  )
A.7B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知m∈R,n∈R,并且m+3n=1,则em+e3n的最小值$2\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系中,O为原点A(-1,0),B(0,$\sqrt{5}$),C(3,0),动点D满足|$\overrightarrow{CD}$|=1,则|$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OD}$|的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2
+x2f(x1),则称函数f(x)为“H函数”,给出下列函数 ①y=x2;②y=ex+1;③y=2x-sinx;④f(x)=$\left\{\begin{array}{l}ln|x|{\;}_{\;}^{\;}x≠0\\ 0{\;}_{\;}^{\;}{\;}_{\;}^{\;}x=0\end{array}\right.$.以上函数是“H函数”的所有序号为(  )
A.①③B.③④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在编号为1,2,3,4,5,6的六个盒子中放入两个不同的小球,每个盒子中最多放入一个小球,且不能在两个编号连续的盒子中同时放入小球,则不同的放小球的方法有20种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=cos($\frac{aπ}{3}$x),a为抛掷一颗骰子所得的点数,则函数f(x)在[0,4]上零点的个数小于5或大于6的概率为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{2}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知矩阵A=$[\begin{array}{l}{a}&{b}\\{2}&{1}\end{array}]$,若矩阵A属于特征值-1的一个特征向量为α1=$[\begin{array}{l}{1}\\{-1}\end{array}]$,属于特征值4的一个特征向量为α2=$[\begin{array}{l}{3}\\{2}\end{array}]$.求矩阵A,并写出A的逆矩阵A-1

查看答案和解析>>

同步练习册答案