精英家教网 > 高中数学 > 题目详情
11.若sin4α+cos4α=1,则sinα+cosα的值等于±1.

分析 由已知得(sin2α+cos2α)2=1+2(sinαcosα)2,从而得到sin2α=0,2α=kπ,k∈Z,由此能求出sinα+cosα的值.

解答 解:∵sin4α+cos4α=1,
∴sin4α+2sin2αcos2α+cos4α=1+2sin2αcos2α,
∴(sin2α+cos2α)2=1+2(sinαcosα)2
∴sinαcosα=0,
∴$\frac{2sinαcosα}{2}$=0,
∴sin2α=0,∴2α=kπ,k∈Z,
∴sinα+cosα=±1.
故答案为:±1.

点评 本题考查三角函数值的求法,是中档题,解题时要认真审题,注意三角函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若直线ax+by+1=0(a>0,b>0)过圆x2+y2+8x+2y+1=0的圆心,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列a1,a2,a3,a4满足a1∈(0,1),a2∈(1,2),a3∈(2,4),则a4的取值范围是(  )
A.(3,8)B.(2,16)C.(4,8)D.$(2\sqrt{2},16)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,记bn=$\frac{{S}_{n+1}}{n}$.
(1)若{an}是首项为a、公差为d的等差数列,其中a,d均为正数.
①当3b1,2b2,b3成等差数列时,求$\frac{a}{d}$的值;
②求证:存在唯一的正整数n,使得an+1≤bn<an+2
(2)设数列{an}是公比为q(q>2)的等比数列,若存在r,t(r,t∈N*,r<t)使得$\frac{{b}_{t}}{{b}_{r}}$=$\frac{t+2}{r+2}$,求q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}满足:a1=1,a2=2,an+2=$\frac{{a}_{n}+{a}_{n+1}}{2}$(n∈N*).设bn=an+1-an
(1)求数列{bn}的通项公式;
(2)求最小正整数N的值,使n>N时,|an-$\frac{5}{3}$|<$\frac{2}{9n}$恒成立;
(3)数列{cn}满足${c_n}=\frac{3}{2}|{{a_n}-\frac{5}{3}}|$,cn的前n项和为Tn,是否存在正整数m、n,使得$\frac{{T}_{n+1}-m}{{T}_{n}-m}$>cm+2成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α,β均为锐角,且sin2α=2sin2β,则(  )
A.tan(α+β)=3tan(α-β)B.tan(α+β)=2tan(α-β)C.3tan(α+β)=tan(α-β)D.3tan(α+β)=2tan(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平面直角坐标系中,直线y=$\sqrt{2}$x与圆O:x2+y2=1交于A、B两点.α、β的始边是x轴的非负半轴,终边分别在射线OA和OB上,则tan(α+β)的值为(  )
A.-2$\sqrt{2}$B.-$\sqrt{2}$C.0D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,右焦点为F2,点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线交椭圆于P,Q两点.若△PF2Q的周长为4,则椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sin2α<0,cosα<0,则下列各式一定成立的是(  )
A.sinα<0B.tanα>0C.sinα+cosα>0D.sinα-cosα>0

查看答案和解析>>

同步练习册答案