精英家教网 > 高中数学 > 题目详情
5.在区间[-1,3]上随机取一个数x,若x满足|x|≤m的概率为$\frac{1}{2}$,则实数m为(  )
A.0B.1C.2D.3

分析 求解不等式|x|≤m,得到-m≤x≤m,得其区间长度,求出区间[-1,3]的长度,由两区间长度比列式得答案.

解答 解:区间[-1,3]的区间长度为4.
不等式|x|≤m的解集为[-m,m],
区间长度为2m,
由$\frac{2m}{4}=\frac{1}{2}$,得m=1.
故选:B.

点评 本题考查几何概型,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x-1,x>0}\\{{2}^{x}-x+\frac{1}{3}{a}^{3},x≤0}\end{array}\right.$,若f(f(4))=$\frac{11}{3}$,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C和抛物线y2=x交于M,N两点,且直线MN恰好通过椭圆C的右焦点.
(I)求椭圆C的标准方程;
(II)A为椭圆的右顶点,经过原点的直线和椭圆C交于B,D两点,设直线AB与AD的斜率分别为k1,k2.问k1•k2是否为定值?若为定值,请求出;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某单位280名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
( I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第1,2,3组的员工人数分别是多少?
( II)为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[35,40)的人数为ξ,求ξ的数学期望;
( III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
喜欢阅读国学类 不喜欢阅读国学类 合计
 男 14 4 18
 女 8 14 22
 合计 22 18 40
根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=cosxsin2x,以下四个结论:
①f(x)既是偶函数,又是周期函数;
②f(x)图象关于直线x=π对称;
③f(x)图象关于$(\frac{π}{2},0)$中心对称;
④f(x)的最大值$\frac{4}{9}\sqrt{3}$.
其中,正确的结论的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知菱形ABCD的边长为2,∠ABC=60°,点E满足$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,则$\overrightarrow{AE}•\overrightarrow{AD}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z满足$\frac{z+1}{z-2}=1-3i$,则|z|=(  )
A.5B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,某地一天6~14时的温度变化曲线近似满足函数y=Asin(ωx+ϕ)+b,则这段曲线的函数解析式可以为(  )
A.$y=10sin(\frac{π}{8}x+\frac{3π}{4})+20$,x∈[6,14]B.$y=10sin(\frac{π}{8}x+\frac{5π}{4})+20$,x∈[6,14]
C.$y=10sin(\frac{π}{8}x-\frac{3π}{4})+20$,x∈[6,14]D.$y=10sin(\frac{π}{8}x+\frac{5π}{8})+20$,x∈[6,14]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x+1)ex-$\frac{1}{2}{x^2}$-ax(a∈R,e是自然对数的底数)在(0,f(0))处的切线与x轴平行.
(1)求函数f(x)的单调递增区间;
(2)设g(x)=(ex+2m-2)x-$\frac{1}{2}{x^2}$-n,若?x∈R,不等式f(x)≥g(x)恒成立,求m-$\frac{n}{2}$的最大值.

查看答案和解析>>

同步练习册答案