精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x2+y2=
a2
4
的切线,切点为E,延长FE交双曲线右支于点P,若
OP
=2
OE
-
OF
,则双曲线的离心率为(  )
A、
10
B、
10
5
C、
10
2
D、
2
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设右焦点为F′,由
OP
=2
OE
-
OF
,可得E是PF的中点,利用O为FF'的中点,可得OE为△PFF'的中位线,从而可求PF′、PF,再由勾股定理得出关于a,c的关系式,最后即可求得离心率.
解答: 解:设右焦点为F′,则
OP
=2
OE
-
OF

OP
+
OF
=2
OE

∴E是PF的中点,
∴PF′=2OE=a,
∴PF=3a,
∵OE⊥PF,
∴PF′⊥PF,
∴(3a)2+a2=4c2
∴e=
c
a
=
10
2

故选:C.
点评:本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查抛物线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,n),
b
=(-1,n),若2
a
-
b
b
垂直,则正数n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数y=logax,y=ax,y=x+a在同一坐标系中的图象可能是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+x,x≤1
log
1
3
x,x>1
,若对任意的x∈R,不等式f(x)≤m2-
3
4
m恒成立,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,那么输出S的值是(  )
A、2
B、
1
2
C、-1
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

圆(x-1)2+y2=3的圆心坐标和半径分别是(  )
A、(-1,0),3
B、(1,0),3
C、(-1,0),
3
D、(1,0),
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足条件
x≥0
y≥0
2x+y≤2
,那么x+3y的最大值是(  )
A、1B、3C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x+
1
0
3(
x
-x2)dx
f(x+2)
(x≥4)
(x<4)
,则f(log23)=(  )
A、13B、19C、37D、49

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1且cosA=
4
5
,则△ABC的外接圆的直径等于(  )
A、
4
5
B、
5
4
C、
3
5
D、
5
3

查看答案和解析>>

同步练习册答案