精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=aex-1-1(x∈R),若方程f(x)+|x-a|=0有且仅有两个不相等的实根,则实数a的取值范围为[0,1)∪{-1}.

分析 根据函数和方程之间的关系讲方程转化为f(x)=-|x-a|,利用数形结合分别作出函数f(x)与g(x)=-|x-a|的图象,利用数形结合进行求解即可.

解答 解:由f(x)+|x-a|=0得f(x)=-|x-a|,
设g(x)=-|x-a|,
①若a=0,则f(x)=-1,g(x)=-|x|,作出f(x)和g(x)的图象如图:此时两个函数有两个交点,满足条件,

②若a>0,则函数g(x)的零点为(a,0),
由f(x)=0得aex-1-1=0,即ex-1=$\frac{1}{a}$,
则x-1=ln$\frac{1}{a}$=-lna,
则x=1-lna,
即f(x)的零点为(1-lna,0),
若两个函数有两个零点,
则1-lna>a,即1-lna-a>0,
设h(a)=1-lna-a,则函数在(0,+∞)上为减函数,
∵h(1)=1-ln1-1=0,
∴由h(a)>0得h(a)>h(1),得a<1.
即此时0<a<1,

③若a<0,当x>a时,g(x)=-|x-a|=-x+a,
当g(x)与f(x)相切时,满足有两个交点,
此时f′(x)=aex-1,设切点为(m,n),
则切线斜率k=aem-1,n=aem-1-1,即切点坐标为(m,aem-1-1),
则切线方程为y-(aem-1-1)=aem-1(x-m),
即y=aem-1(x-m)+(aem-1-1)=aem-1•x-maem-1+aem-1-1,
∵g(x)=-x+a
∴aem-1=-1,-maem-1+aem-1-1=a,
得m-1-1=a,即m=a+2,
则aea+2-1=-1,即aea+1=-1,
得a=-1,

综上所述,0≤a<1或a=-1
故答案为:[0,1)∪{-1}

点评 本题主要考查根的个数的判断,根据函数与方程的关系,转化为两个函数的交点问题,利用分类讨论的数学思想进行求解即可,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,已知∠A=60°,BC=3,AB=$\sqrt{6}$,则∠C=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知tanα=3,求$\frac{2}{3}$sin2α+$\frac{1}{4}$cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,是奇函数的是(  )
A.y=x2sin(x+$\frac{π}{3}$)B.y=x2cos$\frac{x}{3}$C.y=tan(x-$\frac{π}{3}$)D.y=x3tanx2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)在(0,$\frac{π}{2}$)上处处可导,若[f(x)-f′(x)]tanx-f(x)<0,则(  )
A.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定小于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
B.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
C.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
D.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能等于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设x0为函数f(x)=sinπx的零点,且满足|x0|+f(x0+$\frac{1}{2}$)<33,则这样的零点有(  )
A.61个B.63个C.65个D.67个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Asin(3x+φ)(A>0.x∈(-∞,+∞),0<φ<π)在x=$\frac{π}{12}$时取得最大值4..
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若f($\frac{2}{3}$α+$\frac{π}{12}$)=$\frac{12}{5}$.求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在正项等比数列{an}中,前n项和为Sn,a5=1,a6+a7=6,则S5=$\frac{31}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正方体ABCD-A1B1C1D1中,E,F分别是A1D1,D1C1的中点,则异面直线EF与AB1所成角为(  )
A.60°B.45°C.90°D.30°

查看答案和解析>>

同步练习册答案